distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6889
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00018
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7089 | 1.0 | 113 | 1.3908 | 0.47 |
1.0384 | 2.0 | 226 | 1.0306 | 0.65 |
0.9678 | 3.0 | 339 | 0.9619 | 0.66 |
0.9463 | 4.0 | 452 | 0.5874 | 0.8 |
0.5288 | 5.0 | 565 | 0.6033 | 0.83 |
0.1325 | 6.0 | 678 | 0.6730 | 0.87 |
0.2124 | 7.0 | 791 | 0.7158 | 0.84 |
0.0054 | 8.0 | 904 | 0.7187 | 0.86 |
0.004 | 9.0 | 1017 | 0.6297 | 0.88 |
0.0026 | 10.0 | 1130 | 0.6889 | 0.89 |
Framework versions
- Transformers 4.32.1
- Pytorch 1.13.1
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 271
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jackoyoungblood/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert