This model was trained on a Japanese dataset and built with Qwen.

Evaluation

llm-jp-eval script(colab)

!git clone https://github.com/llm-jp/llm-jp-eval.git
!cd llm-jp-eval && pip install -e .
!cd llm-jp-eval && python scripts/preprocess_dataset.py --dataset-name all --output-dir ./dataset_dir
!cd llm-jp-eval && python scripts/evaluate_llm.py -cn config.yaml model.pretrained_model_name_or_path=jaeyong2/Qwen2.5-0.5B-Instruct-JaMagpie-Preview tokenizer.pretrained_model_name_or_path=jaeyong2/Qwen2.5-0.5B-Instruct-JaMagpie-Preview dataset_dir=./dataset_dir/1.4.1/evaluation/test
llm-jp-eval Qwen2.5-3B-Instruct finetuning-model
AVG 0.4921 0.4895
CG 0.1000 0
EL 0.4770 0.4431
FA 0.1210 0.1246
HE 0.5550 0.5650
MC 0.7133 0.7900
MR 0.5400 0.6100
MT 0.6391 0.5982
NLI 0.6640 0.6640
QA 0.2638 0.3165
RC 0.8481 0.7837

License

Qwen/Qwen2.5-3B-Instruct : https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE

Acknowledgement

This research is supported by TPU Research Cloud program.

Downloads last month
12
Safetensors
Model size
3.09B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jaeyong2/Qwen2.5-3B-Instruct-Ja-SFT

Base model

Qwen/Qwen2.5-3B
Finetuned
(548)
this model
Quantizations
2 models