segformer-b0-finetuned-segments-sidewalk-4
This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:
- Loss: 1.6258
- Mean Iou: 0.1481
- Mean Accuracy: 0.1991
- Overall Accuracy: 0.7316
- Per Category Iou: [nan, 0.4971884694242825, 0.7844619900838784, 0.0, 0.10165655377640956, 0.007428563507709108, nan, 4.566798099115959e-06, 0.0, 0.0, 0.5570746278221521, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.534278997386317, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7557693923373933, 0.5270379031768208, 0.8254522211471568, 0.0, 0.0, 0.0, 0.0]
- Per Category Accuracy: [nan, 0.8698779680369205, 0.9122325676343133, 0.0, 0.10179229832932858, 0.007508413919135004, nan, 4.566798099115959e-06, 0.0, 0.0, 0.8968168359562617, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.8492049383357001, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9388033874781816, 0.6627890453030717, 0.9334458854084583, 0.0, 0.0, 0.0, 0.0]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
1.7912 | 1.0 | 25 | 1.6392 | 0.1412 | 0.1911 | 0.7210 | [nan, 0.48942576059104514, 0.7754689525048201, 0.0, 0.031932013148008094, 0.004348266117522573, nan, 1.5527099355168697e-05, 0.0, 0.0, 0.5356571432088642, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5243044552616699, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7355207837531991, 0.4479559177066271, 0.8315839315332364, 0.0, 0.0, 0.0, 0.0] | [nan, 0.8476069713517648, 0.9129050708992534, 0.0, 0.03194435645315849, 0.004370669306327572, nan, 1.552711353699426e-05, 0.0, 0.0, 0.897824434787493, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.8555478632753987, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9510113270409175, 0.5116786406550935, 0.9122706949370997, 0.0, 0.0, 0.0, 0.0] |
1.7531 | 2.0 | 50 | 1.6258 | 0.1481 | 0.1991 | 0.7316 | [nan, 0.4971884694242825, 0.7844619900838784, 0.0, 0.10165655377640956, 0.007428563507709108, nan, 4.566798099115959e-06, 0.0, 0.0, 0.5570746278221521, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.534278997386317, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7557693923373933, 0.5270379031768208, 0.8254522211471568, 0.0, 0.0, 0.0, 0.0] | [nan, 0.8698779680369205, 0.9122325676343133, 0.0, 0.10179229832932858, 0.007508413919135004, nan, 4.566798099115959e-06, 0.0, 0.0, 0.8968168359562617, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.8492049383357001, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9388033874781816, 0.6627890453030717, 0.9334458854084583, 0.0, 0.0, 0.0, 0.0] |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.