metadata
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: mlx
inference: false
base_model: mlx-community/Magistral-Small-2506-bf16
extra_gated_description: >-
If you want to learn more about how we process your personal data, please read
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
pipeline_tag: text-generation
tags:
- mlx
- mlx
- mlx-my-repo
janboe91/Magistral-Small-2506-bf16-mlx-6Bit
The Model janboe91/Magistral-Small-2506-bf16-mlx-6Bit was converted to MLX format from mlx-community/Magistral-Small-2506-bf16 using mlx-lm version 0.22.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("janboe91/Magistral-Small-2506-bf16-mlx-6Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)