Built with Axolotl

See axolotl config

axolotl version: 0.7.0

base_model: yentinglin/Llama-3-Taiwan-8B-Instruct
#trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false

hub_model_id: jasonhuang3/jason-2k-1
hub_strategy: end
wandb_name: jason 8b 2k

dataset_processes: 16
datasets:
  - path: jasonhuang3/taitung_gemini_v1v3_messages
#  - path: jasonhuang3/instruct_output_v1_messages
    type: chat_template
    field_messages: messages
chat_template: llama3

dataset_prepared_path: last_run_prepared_jason_8b
val_set_size: 0.05 #
output_dir: ./output/8b/jason/2k-1

save_safetensors: true
sequence_len: 2048 #
sample_packing: true
pad_to_sequence_len: true

wandb_project: jasontwllm
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2 #
num_epochs: 4 #
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-4

train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 5 #
evals_per_epoch: 4 #
eval_table_size:
saves_per_epoch: 1
save_total_limit: 10
save_steps:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0 #
fsdp:
fsdp_config:

#
adapter: lora
lora_r: 64
lora_alpha: 64
lora_dropout: 0.0
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
  - gate_proj
  - down_proj
  - up_proj

#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true

eval_sample_packing: False #

jason-2k-1

This model is a fine-tuned version of yentinglin/Llama-3-Taiwan-8B-Instruct on the jasonhuang3/taitung_gemini_v1v3_messages dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
2.5468 0.0690 1 2.7452
2.2849 0.2759 4 2.2667
1.8185 0.5517 8 1.9545
1.705 0.8276 12 1.8034
1.5654 1.0690 16 1.7497
1.4897 1.3448 20 1.7219
1.4709 1.6207 24 1.7026
1.4316 1.8966 28 1.6768
1.3117 2.1379 32 1.6765
1.2819 2.4138 36 1.6759
1.2825 2.6897 40 1.6815
1.2934 2.9655 44 1.6787
1.2153 3.2069 48 1.6747
1.2287 3.4828 52 1.6745
1.1894 3.7586 56 1.6743

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.4.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jasonhuang3/sft-lora-2k

Adapter
(3)
this model

Dataset used to train jasonhuang3/sft-lora-2k