Model Details
Model Description
- Developed by: [Jixin Yang @ HKUST]
- Model type: [PEFT (LoRA) fine-tuned LLaMA-2 7B for backward text generation]
- Finetuned from model [optional]: [meta-llama/Llama-2-7b-hf]
Uses
This model is designed for backward text generation - given an output text, it generates the corresponding input.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "jasperyeoh2/llama2-7b-backward-model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
input_text = "Output text to reverse" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Details
Training Data
- Dataset: OpenAssistant-Guanaco
- Number of examples used: ~3,200
- Task: Instruction Backtranslation (Answer → Prompt)
Training Procedure
Preprocessing [optional]
- Method: PEFT with LoRA (Low-Rank Adaptation)
- Quantization: 4-bit (NF4)
- LoRA config:
r
: 8alpha
: 16target_modules
: ["q_proj", "v_proj"]dropout
: 0.05
- Max sequence length: 512 tokens
- Epochs: 10
- Batch size: 2
- Gradient accumulation steps: 8
- Effective batch size: 16
- Learning rate: 2e-5
- Scheduler: linear with warmup
- Optimizer: AdamW
- Early stopping: enabled (patience=2)
Metrics
Results
[- Final eval loss: ~1.436
- Final train loss: ~1.4
- Training completed in ~8 epochs]
Compute Infrastructure
- GPU: 1× NVIDIA A800 (80GB)
- CUDA Version: 12.1
Software
- OS: Ubuntu 20.04
- Python: 3.10
- Transformers: 4.38.2
- PEFT: 0.15.1
- Accelerate: 0.28.0
- BitsAndBytes: 0.41.2]
Hardware
NVIDIA A800 GPU
Framework versions
- PEFT 0.15.1
- Downloads last month
- 4
Model tree for jasperyeoh2/llama2-7b-backward-model
Base model
meta-llama/Llama-2-7b-hf