vmw-mbert-focal

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 7.3491
  • F1-micro: 0.2160
  • F1-macro: 0.2129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 15
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss F1-micro F1-macro
59.9673 1.0 39 7.9372 0.1801 0.1498
58.4439 2.0 78 7.6562 0.2115 0.2035
57.2029 3.0 117 7.4439 0.2205 0.2175
54.4624 4.0 156 7.3491 0.2160 0.2129

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jaycentg/vmw-mbert-focal

Finetuned
(1758)
this model