sagittal-b4-v11-finetuned-segments
This model is a fine-tuned version of nvidia/mit-b4 on the jenniferlumeng/MiceSagittal dataset. It achieves the following results on the evaluation set:
- Loss: 0.2102
- Mean Iou: 0.7660
- Mean Accuracy: 0.8966
- Overall Accuracy: 0.9025
- Accuracy Background: nan
- Accuracy Olfactory bulb: 0.9311
- Accuracy Anterior olfactory nucleus: 0.8576
- Accuracy Basal ganglia: 0.8881
- Accuracy Cortex: 0.9547
- Accuracy Hypothalamus: 0.7991
- Accuracy Thalamus: 0.8460
- Accuracy Hippocampus: 0.9531
- Accuracy Midbrain: 0.8908
- Accuracy Cerebellum: 0.9482
- Accuracy Pons and medulla: 0.8971
- Iou Background: 0.0
- Iou Olfactory bulb: 0.9039
- Iou Anterior olfactory nucleus: 0.7535
- Iou Basal ganglia: 0.8169
- Iou Cortex: 0.9464
- Iou Hypothalamus: 0.6482
- Iou Thalamus: 0.8106
- Iou Hippocampus: 0.9292
- Iou Midbrain: 0.8164
- Iou Cerebellum: 0.9371
- Iou Pons and medulla: 0.8635
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Olfactory bulb | Accuracy Anterior olfactory nucleus | Accuracy Basal ganglia | Accuracy Cortex | Accuracy Hypothalamus | Accuracy Thalamus | Accuracy Hippocampus | Accuracy Midbrain | Accuracy Cerebellum | Accuracy Pons and medulla | Iou Background | Iou Olfactory bulb | Iou Anterior olfactory nucleus | Iou Basal ganglia | Iou Cortex | Iou Hypothalamus | Iou Thalamus | Iou Hippocampus | Iou Midbrain | Iou Cerebellum | Iou Pons and medulla |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.679 | 2.8571 | 20 | 0.9745 | 0.6058 | 0.7741 | 0.8090 | nan | 0.8511 | 0.3173 | 0.7203 | 0.9142 | 0.7325 | 0.7090 | 0.9034 | 0.7282 | 0.9504 | 0.9147 | 0.0 | 0.7558 | 0.2904 | 0.5982 | 0.7974 | 0.6685 | 0.5337 | 0.7721 | 0.5572 | 0.9323 | 0.7581 |
0.3016 | 5.7143 | 40 | 0.3587 | 0.7273 | 0.8768 | 0.8823 | nan | 0.9822 | 0.8005 | 0.9478 | 0.9440 | 0.6822 | 0.8097 | 0.9763 | 0.7227 | 0.9769 | 0.9253 | 0.0 | 0.9301 | 0.7134 | 0.7860 | 0.9003 | 0.6332 | 0.7492 | 0.8546 | 0.6615 | 0.9086 | 0.8635 |
0.1624 | 8.5714 | 60 | 0.2448 | 0.7492 | 0.8943 | 0.8995 | nan | 0.9893 | 0.8487 | 0.8965 | 0.9607 | 0.7695 | 0.7685 | 0.9800 | 0.7855 | 0.9873 | 0.9567 | 0.0 | 0.9430 | 0.6882 | 0.8037 | 0.9349 | 0.6812 | 0.7179 | 0.9229 | 0.7106 | 0.9520 | 0.8865 |
0.1345 | 11.4286 | 80 | 0.2230 | 0.7558 | 0.8896 | 0.9019 | nan | 0.9778 | 0.8016 | 0.9463 | 0.9728 | 0.6755 | 0.8240 | 0.9634 | 0.8346 | 0.9680 | 0.9321 | 0.0 | 0.9270 | 0.7009 | 0.8164 | 0.9578 | 0.6296 | 0.7628 | 0.9486 | 0.7469 | 0.9470 | 0.8766 |
0.0976 | 14.2857 | 100 | 0.1891 | 0.7781 | 0.9114 | 0.9200 | nan | 0.9805 | 0.8293 | 0.9469 | 0.9676 | 0.7870 | 0.8236 | 0.9832 | 0.8752 | 0.9811 | 0.9393 | 0.0 | 0.9437 | 0.7270 | 0.8437 | 0.9653 | 0.7230 | 0.7625 | 0.9627 | 0.7735 | 0.9634 | 0.8941 |
0.0881 | 17.1429 | 120 | 0.1893 | 0.7803 | 0.9135 | 0.9214 | nan | 0.9807 | 0.8364 | 0.9315 | 0.9758 | 0.7977 | 0.8714 | 0.9677 | 0.8514 | 0.9779 | 0.9439 | 0.0 | 0.9431 | 0.7231 | 0.8374 | 0.9699 | 0.7346 | 0.7965 | 0.9561 | 0.7745 | 0.9599 | 0.8885 |
0.0873 | 20.0 | 140 | 0.1849 | 0.7739 | 0.9054 | 0.9158 | nan | 0.9813 | 0.8181 | 0.9328 | 0.9729 | 0.7932 | 0.8266 | 0.9580 | 0.8558 | 0.9728 | 0.9421 | 0.0 | 0.9382 | 0.7194 | 0.8417 | 0.9664 | 0.7251 | 0.7666 | 0.9478 | 0.7653 | 0.9597 | 0.8831 |
0.076 | 22.8571 | 160 | 0.1871 | 0.7765 | 0.9086 | 0.9192 | nan | 0.9823 | 0.8126 | 0.9226 | 0.9777 | 0.8067 | 0.8463 | 0.9570 | 0.8531 | 0.9776 | 0.9498 | 0.0 | 0.9369 | 0.7113 | 0.8346 | 0.9719 | 0.7353 | 0.7829 | 0.9478 | 0.7706 | 0.9621 | 0.8881 |
0.0948 | 25.7143 | 180 | 0.1850 | 0.7727 | 0.9047 | 0.9139 | nan | 0.9730 | 0.8330 | 0.9127 | 0.9667 | 0.8194 | 0.8083 | 0.9538 | 0.8653 | 0.9759 | 0.9384 | 0.0 | 0.9374 | 0.7165 | 0.8343 | 0.9599 | 0.7339 | 0.7588 | 0.9442 | 0.7697 | 0.9559 | 0.8895 |
0.0646 | 28.5714 | 200 | 0.1813 | 0.7756 | 0.9067 | 0.9137 | nan | 0.9731 | 0.8354 | 0.9258 | 0.9588 | 0.7750 | 0.8675 | 0.9635 | 0.8512 | 0.9749 | 0.9422 | 0.0 | 0.9414 | 0.7175 | 0.8305 | 0.9569 | 0.7235 | 0.7973 | 0.9530 | 0.7725 | 0.9562 | 0.8827 |
0.0636 | 31.4286 | 220 | 0.1894 | 0.7729 | 0.9034 | 0.9130 | nan | 0.9754 | 0.8133 | 0.9279 | 0.9673 | 0.7529 | 0.8737 | 0.9581 | 0.8483 | 0.9725 | 0.9448 | 0.0 | 0.9383 | 0.7088 | 0.8227 | 0.9625 | 0.7090 | 0.7979 | 0.9488 | 0.7750 | 0.9556 | 0.8831 |
0.0688 | 34.2857 | 240 | 0.1906 | 0.7761 | 0.9079 | 0.9174 | nan | 0.9803 | 0.8062 | 0.9240 | 0.9747 | 0.7894 | 0.8718 | 0.9650 | 0.8394 | 0.9792 | 0.9491 | 0.0 | 0.9350 | 0.7046 | 0.8302 | 0.9689 | 0.7313 | 0.7982 | 0.9527 | 0.7717 | 0.9579 | 0.8864 |
0.0635 | 37.1429 | 260 | 0.1874 | 0.7783 | 0.9093 | 0.9189 | nan | 0.9814 | 0.8162 | 0.9153 | 0.9752 | 0.8063 | 0.8667 | 0.9536 | 0.8567 | 0.9783 | 0.9436 | 0.0 | 0.9397 | 0.7071 | 0.8299 | 0.9683 | 0.7441 | 0.7990 | 0.9457 | 0.7800 | 0.9584 | 0.8887 |
0.0693 | 40.0 | 280 | 0.1869 | 0.7785 | 0.9094 | 0.9180 | nan | 0.9779 | 0.8151 | 0.9170 | 0.9727 | 0.8047 | 0.8740 | 0.9628 | 0.8455 | 0.9772 | 0.9471 | 0.0 | 0.9398 | 0.7103 | 0.8302 | 0.9678 | 0.7427 | 0.8030 | 0.9514 | 0.7747 | 0.9586 | 0.8853 |
0.0585 | 42.8571 | 300 | 0.1889 | 0.7770 | 0.9081 | 0.9168 | nan | 0.9778 | 0.8248 | 0.9108 | 0.9720 | 0.8021 | 0.8638 | 0.9564 | 0.8545 | 0.9768 | 0.9426 | 0.0 | 0.9389 | 0.7094 | 0.8293 | 0.9663 | 0.7435 | 0.7943 | 0.9470 | 0.7763 | 0.9559 | 0.8859 |
0.0783 | 45.7143 | 320 | 0.1880 | 0.7772 | 0.9078 | 0.9166 | nan | 0.9768 | 0.8193 | 0.9141 | 0.9708 | 0.7949 | 0.8700 | 0.9590 | 0.8567 | 0.9741 | 0.9426 | 0.0 | 0.9385 | 0.7093 | 0.8312 | 0.9651 | 0.7414 | 0.7979 | 0.9484 | 0.7769 | 0.9560 | 0.8842 |
0.0588 | 48.5714 | 340 | 0.1859 | 0.7774 | 0.9076 | 0.9167 | nan | 0.9767 | 0.8169 | 0.9159 | 0.9709 | 0.8001 | 0.8695 | 0.9546 | 0.8556 | 0.9744 | 0.9415 | 0.0 | 0.9380 | 0.7104 | 0.8323 | 0.9656 | 0.7425 | 0.7984 | 0.9455 | 0.7779 | 0.9563 | 0.8848 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 2.16.1
- Tokenizers 0.21.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jenniferlumeng/sagittal-b4-v11-finetuned-segments
Base model
nvidia/mit-b4