ucf101_42

This model is a fine-tuned version of MCG-NJU/videomae-base on the ucf101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8198
  • Accuracy: 0.8298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.01 300 2.3345 0.4887
No log 2.01 600 1.4956 0.6433
No log 3.01 900 1.1647 0.7162
1.5784 4.01 1200 1.1531 0.7029
1.5784 5.01 1500 1.0251 0.7334
1.5784 6.01 1800 1.0315 0.7333
0.1821 7.01 2100 0.9787 0.7617
0.1821 8.01 2400 0.8933 0.7838
0.1821 9.01 2700 0.8781 0.7917
0.0651 10.01 3000 0.9051 0.7910
0.0651 11.01 3300 0.9593 0.7900
0.0651 12.01 3600 0.8054 0.8187
0.0651 13.01 3900 0.8679 0.8142
0.0265 14.01 4200 0.8380 0.8208
0.0265 15.01 4500 0.8317 0.8247
0.0265 16.01 4800 0.8027 0.8249
0.0091 17.01 5100 0.8240 0.8255
0.0091 18.01 5400 0.8480 0.8211
0.0091 19.01 5700 0.8198 0.8298
0.0091 19.87 5960 0.8315 0.8283

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
15
Safetensors
Model size
86.3M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/ucf101_videomae-base

Finetuned
(603)
this model