|
--- |
|
pipeline_tag: text-ranking |
|
tags: |
|
- mlx |
|
- reranker |
|
- qwen3 |
|
language: |
|
- multilingual |
|
base_model: jinaai/jina-reranker-v3 |
|
base_model_relation: quantized |
|
inference: false |
|
license: cc-by-nc-4.0 |
|
library_name: mlx |
|
--- |
|
|
|
# jina-reranker-v3-mlx |
|
|
|
MLX port of [jina-reranker-v3](https://huggingface.co/jinaai/jina-reranker-v3), a 0.6B parameter multilingual listwise reranker optimized for Apple Silicon. Features native MLX implementation with 100% matching of rank scores and embeddings to the original implementation. No transformers library required. |
|
|
|
## Installation |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Usage |
|
|
|
### Basic Example |
|
|
|
```python |
|
from rerank import MLXReranker |
|
|
|
# Initialize the reranker |
|
reranker = MLXReranker() |
|
|
|
# Your query and documents |
|
query = "What are the health benefits of green tea?" |
|
documents = [ |
|
"Green tea contains antioxidants called catechins that may help reduce inflammation and protect cells from damage.", |
|
"El precio del café ha aumentado un 20% este año debido a problemas en la cadena de suministro.", |
|
"Studies show that drinking green tea regularly can improve brain function and boost metabolism.", |
|
"Basketball is one of the most popular sports in the United States.", |
|
"绿茶富含儿茶素等抗氧化剂,可以降低心脏病风险,还有助于控制体重。", |
|
"Le thé vert est riche en antioxydants et peut améliorer la fonction cérébrale.", |
|
] |
|
|
|
# Rerank documents |
|
results = reranker.rerank(query, documents) |
|
|
|
# Results are sorted by relevance score (highest first) |
|
for result in results: |
|
print(f"Score: {result['relevance_score']:.4f}") |
|
print(f"Document: {result['document'][:100]}...") |
|
print() |
|
``` |
|
|
|
### API Reference |
|
|
|
```python |
|
reranker.rerank( |
|
query: str, # Search query |
|
documents: List[str], # Documents to rank |
|
top_n: Optional[int] = None, # Return only top N (default: all) |
|
return_embeddings: bool = False, # Include doc embeddings (default: False) |
|
) |
|
``` |
|
|
|
**Returns:** List of dicts with keys: |
|
- `document`: Original document text |
|
- `relevance_score`: Float score (higher = more relevant) |
|
- `index`: Position in input documents list |
|
- `embedding`: Document embedding (if `return_embeddings=True`) |
|
|
|
### Advanced Usage |
|
|
|
```python |
|
# Get only top 3 results |
|
top_results = reranker.rerank(query, documents, top_n=3) |
|
|
|
# Get embeddings for further processing |
|
results_with_embeddings = reranker.rerank(query, documents, return_embeddings=True) |
|
for result in results_with_embeddings: |
|
embedding = result['embedding'] # numpy array of shape (512,) |
|
# Use embedding for downstream tasks... |
|
``` |
|
|
|
### Custom Model Path |
|
|
|
```python |
|
# If model files are in a different location |
|
reranker = MLXReranker( |
|
model_path="/path/to/model", |
|
projector_path="/path/to/projector.safetensors" |
|
) |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
If you find `jina-reranker-v3` useful in your research, please cite the [original paper](https://arxiv.org/abs/2509.25085): |
|
|
|
```bibtex |
|
@misc{wang2025jinarerankerv3lateinteractiondocument, |
|
title={jina-reranker-v3: Last but Not Late Interaction for Document Reranking}, |
|
author={Feng Wang and Yuqing Li and Han Xiao}, |
|
year={2025}, |
|
eprint={2509.25085}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2509.25085}, |
|
} |
|
``` |
|
|
|
## License |
|
|
|
This MLX implementation follows the same CC BY-NC 4.0 license as the original model. For commercial usage inquiries, please [contact Jina AI](https://jina.ai/contact-sales/). |
|
|