OCR-LayoutLMv3 / README.md
jinhybr's picture
End of training
ed7990f
|
raw
history blame
3.8 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: OCR-LayoutLMv3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: funsd-layoutlmv3
          type: funsd-layoutlmv3
          config: funsd
          split: train
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.8988653182042428
          - name: Recall
            type: recall
            value: 0.905116741182315
          - name: F1
            type: f1
            value: 0.9019801980198019
          - name: Accuracy
            type: accuracy
            value: 0.8403661000832046

OCR-LayoutLMv3

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9788
  • Precision: 0.8989
  • Recall: 0.9051
  • F1: 0.9020
  • Accuracy: 0.8404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 100 0.6966 0.7418 0.8063 0.7727 0.7801
No log 2.67 200 0.5767 0.8104 0.8644 0.8365 0.8117
No log 4.0 300 0.5355 0.8246 0.8852 0.8539 0.8295
No log 5.33 400 0.5240 0.8706 0.8922 0.8813 0.8427
0.5326 6.67 500 0.6337 0.8528 0.8778 0.8651 0.8260
0.5326 8.0 600 0.6870 0.8698 0.8828 0.8762 0.8240
0.5326 9.33 700 0.6584 0.8723 0.9061 0.8889 0.8342
0.5326 10.67 800 0.7186 0.8868 0.9031 0.8949 0.8335
0.5326 12.0 900 0.6822 0.9040 0.9076 0.9058 0.8526
0.1248 13.33 1000 0.7042 0.8872 0.9021 0.8946 0.8511
0.1248 14.67 1100 0.7920 0.9027 0.9036 0.9032 0.8480
0.1248 16.0 1200 0.8052 0.8964 0.9151 0.9056 0.8389
0.1248 17.33 1300 0.8932 0.8995 0.9066 0.9030 0.8329
0.1248 18.67 1400 0.8728 0.8950 0.9061 0.9005 0.8398
0.0442 20.0 1500 0.9051 0.8960 0.9116 0.9037 0.8347
0.0442 21.33 1600 0.9587 0.8947 0.9031 0.8989 0.8401
0.0442 22.67 1700 0.9822 0.9042 0.9046 0.9044 0.8389
0.0442 24.0 1800 0.9734 0.9043 0.9061 0.9052 0.8391
0.0442 25.33 1900 0.9842 0.9042 0.9091 0.9066 0.8410
0.0225 26.67 2000 0.9788 0.8989 0.9051 0.9020 0.8404

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.6.1
  • Tokenizers 0.13.1