gemma7bit-lora-sql / README.md
jjovalle99's picture
gemma7b-ft-lora-sql-v2adapters
ede022b verified
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-7b
datasets:
- generator
model-index:
- name: gemma7bit-lora-sql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma7bit-lora-sql
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1399
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 16.1657 | 0.06 | 20 | 13.6485 |
| 7.8281 | 0.13 | 40 | 0.7808 |
| 0.6243 | 0.19 | 60 | 0.5270 |
| 0.5179 | 0.25 | 80 | 0.4859 |
| 0.4908 | 0.32 | 100 | 0.4754 |
| 0.4752 | 0.38 | 120 | 0.4600 |
| 0.4877 | 0.45 | 140 | 0.4584 |
| 0.4626 | 0.51 | 160 | 0.4560 |
| 0.4569 | 0.57 | 180 | 0.4428 |
| 0.4504 | 0.64 | 200 | 0.4354 |
| 0.4432 | 0.7 | 220 | 0.4348 |
| 0.4395 | 0.76 | 240 | 0.4317 |
| 0.4338 | 0.83 | 260 | 0.4256 |
| 0.4308 | 0.89 | 280 | 0.4260 |
| 0.4283 | 0.95 | 300 | 0.4210 |
| 0.4146 | 1.02 | 320 | 0.4225 |
| 0.3848 | 1.08 | 340 | 0.4186 |
| 0.3812 | 1.14 | 360 | 0.4185 |
| 0.38 | 1.21 | 380 | 0.4200 |
| 0.3795 | 1.27 | 400 | 0.4171 |
| 0.3766 | 1.34 | 420 | 0.4174 |
| 0.3772 | 1.4 | 440 | 0.4136 |
| 0.3777 | 1.46 | 460 | 0.4148 |
| 0.379 | 1.53 | 480 | 0.4155 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2