distilbert-ner-cv-fine-tuned-v2
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0748
- Precision: 0.9227
- Recall: 0.9216
- F1: 0.9222
- Accuracy: 0.9227
- Macro F1: 0.9077
- Weighted F1: 0.9222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Macro F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|---|
0.1493 | 1.0 | 412 | 0.1202 | 0.8779 | 0.8718 | 0.8749 | 0.8779 | 0.8603 | 0.8753 |
0.1094 | 2.0 | 824 | 0.0878 | 0.9224 | 0.9031 | 0.9127 | 0.9224 | 0.8979 | 0.9118 |
0.0852 | 3.0 | 1236 | 0.0790 | 0.9218 | 0.9168 | 0.9193 | 0.9218 | 0.9086 | 0.9192 |
0.076 | 4.0 | 1648 | 0.0826 | 0.9028 | 0.9165 | 0.9096 | 0.9028 | 0.8947 | 0.9104 |
0.0793 | 5.0 | 2060 | 0.0761 | 0.9258 | 0.9140 | 0.9199 | 0.9258 | 0.9069 | 0.9198 |
0.0636 | 6.0 | 2472 | 0.0750 | 0.9256 | 0.9186 | 0.9221 | 0.9256 | 0.9047 | 0.9219 |
0.0671 | 7.0 | 2884 | 0.0742 | 0.9218 | 0.9201 | 0.9209 | 0.9218 | 0.9058 | 0.9209 |
0.0529 | 8.0 | 3296 | 0.0748 | 0.9227 | 0.9216 | 0.9222 | 0.9227 | 0.9077 | 0.9222 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 152
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support