distilbert-ner-cv-fine-tuned-v2

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0748
  • Precision: 0.9227
  • Recall: 0.9216
  • F1: 0.9222
  • Accuracy: 0.9227
  • Macro F1: 0.9077
  • Weighted F1: 0.9222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Macro F1 Weighted F1
0.1493 1.0 412 0.1202 0.8779 0.8718 0.8749 0.8779 0.8603 0.8753
0.1094 2.0 824 0.0878 0.9224 0.9031 0.9127 0.9224 0.8979 0.9118
0.0852 3.0 1236 0.0790 0.9218 0.9168 0.9193 0.9218 0.9086 0.9192
0.076 4.0 1648 0.0826 0.9028 0.9165 0.9096 0.9028 0.8947 0.9104
0.0793 5.0 2060 0.0761 0.9258 0.9140 0.9199 0.9258 0.9069 0.9198
0.0636 6.0 2472 0.0750 0.9256 0.9186 0.9221 0.9256 0.9047 0.9219
0.0671 7.0 2884 0.0742 0.9218 0.9201 0.9209 0.9218 0.9058 0.9209
0.0529 8.0 3296 0.0748 0.9227 0.9216 0.9222 0.9227 0.9077 0.9222

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
152
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for joaopdss/distilbert-ner-cv-fine-tuned-v2

Finetuned
(288)
this model