distilbert-ner-cv-fine-tuned-v3
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1780
- Precision: 0.9072
- Recall: 0.9032
- F1: 0.9052
- Accuracy: 0.9072
- Macro F1: 0.8952
- Weighted F1: 0.9051
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Macro F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|---|
0.1121 | 1.0 | 522 | 0.1021 | 0.8949 | 0.8883 | 0.8916 | 0.8949 | 0.8765 | 0.8917 |
0.0998 | 2.0 | 1044 | 0.0949 | 0.8919 | 0.8996 | 0.8957 | 0.8919 | 0.8901 | 0.8961 |
0.0756 | 3.0 | 1566 | 0.0929 | 0.9044 | 0.9044 | 0.9044 | 0.9044 | 0.8949 | 0.9041 |
0.0644 | 4.0 | 2088 | 0.0962 | 0.8940 | 0.8903 | 0.8921 | 0.8940 | 0.8890 | 0.8922 |
0.0485 | 5.0 | 2610 | 0.1148 | 0.8950 | 0.8961 | 0.8956 | 0.8950 | 0.8766 | 0.8956 |
0.0408 | 6.0 | 3132 | 0.1177 | 0.8968 | 0.9030 | 0.8999 | 0.8968 | 0.8849 | 0.9001 |
0.0328 | 7.0 | 3654 | 0.1272 | 0.9007 | 0.8998 | 0.9002 | 0.9007 | 0.8862 | 0.9004 |
0.0232 | 8.0 | 4176 | 0.1398 | 0.8978 | 0.9106 | 0.9041 | 0.8978 | 0.8928 | 0.9045 |
0.015 | 9.0 | 4698 | 0.1547 | 0.9005 | 0.8978 | 0.8992 | 0.9005 | 0.8850 | 0.8992 |
0.0135 | 10.0 | 5220 | 0.1704 | 0.9030 | 0.9027 | 0.9028 | 0.9030 | 0.8901 | 0.9028 |
0.013 | 11.0 | 5742 | 0.1734 | 0.9057 | 0.9035 | 0.9046 | 0.9057 | 0.8888 | 0.9043 |
0.0108 | 12.0 | 6264 | 0.1780 | 0.9072 | 0.9032 | 0.9052 | 0.9072 | 0.8952 | 0.9051 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support