Built with Axolotl

See axolotl config

axolotl version: 0.4.1

absolute_data_files: false
adapter: lora
base_model: heegyu/WizardVicuna-open-llama-3b-v2
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
  - 3345d49e1cbcdbe8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
dpo:
  beta: 0.1
  enabled: true
  group_by_length: false
  rank_loss: true
  reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: joboffer/b42b7c1b-cd7a-4a3f-9709-7542d08959d8
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/3345d49e1cbcdbe8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 05bb4a12-ca77-43c5-a1d5-333996143bef
wandb_project: s56-28
wandb_run: your_name
wandb_runid: 05bb4a12-ca77-43c5-a1d5-333996143bef
warmup_steps: 50
weight_decay: 0.01
xformers_attention: false

b42b7c1b-cd7a-4a3f-9709-7542d08959d8

This model is a fine-tuned version of heegyu/WizardVicuna-open-llama-3b-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
1.193 0.4893 400 1.1670

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for joboffer/b42b7c1b-cd7a-4a3f-9709-7542d08959d8

Adapter
(256)
this model