|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mbarthez-copy_mechanism-hal_articles |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 36.548 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbarthez-davide_articles-copy_enhanced |
|
|
|
This model is a fine-tuned version of [moussaKam/mbarthez](https://huggingface.co/moussaKam/mbarthez) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4905 |
|
- Rouge1: 36.548 |
|
- Rouge2: 19.6282 |
|
- Rougel: 30.2513 |
|
- Rougelsum: 30.2765 |
|
- Gen Len: 25.7238 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.6706 | 1.0 | 33552 | 1.5690 | 31.2477 | 16.5455 | 26.9855 | 26.9754 | 18.6217 | |
|
| 1.3446 | 2.0 | 67104 | 1.5060 | 32.1108 | 17.1408 | 27.7833 | 27.7703 | 18.9115 | |
|
| 1.3245 | 3.0 | 100656 | 1.4905 | 32.9084 | 17.7027 | 28.2912 | 28.2975 | 18.9801 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.10.2 |
|
- Pytorch 1.7.1+cu110 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.3 |
|
|