segformer-b0-winter
This model is a fine-tuned version of nvidia/mit-b0 on the johanhag/winter-test dataset. It achieves the following results on the evaluation set:
- Loss: 0.1441
- Mean Iou: 0.8861
- Mean Accuracy: 0.9456
- Overall Accuracy: 0.9660
- Accuracy Unlabeled: nan
- Accuracy Object: nan
- Accuracy Road: 0.9769
- Accuracy Side walk: 0.8930
- Accuracy Car: 0.9347
- Accuracy Pedestrian: nan
- Accuracy Other: 0.9779
- Iou Unlabeled: nan
- Iou Object: nan
- Iou Road: 0.9197
- Iou Side walk: 0.8250
- Iou Car: 0.8319
- Iou Pedestrian: nan
- Iou Other: 0.9678
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Object | Accuracy Road | Accuracy Side walk | Accuracy Car | Accuracy Pedestrian | Accuracy Other | Iou Unlabeled | Iou Object | Iou Road | Iou Side walk | Iou Car | Iou Pedestrian | Iou Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2207 | 4.0 | 20 | 0.2300 | 0.8576 | 0.9439 | 0.9583 | nan | nan | 0.9738 | 0.8767 | 0.9564 | nan | 0.9686 | nan | nan | 0.9018 | 0.8000 | 0.7670 | nan | 0.9617 |
0.1792 | 8.0 | 40 | 0.2126 | 0.8696 | 0.9457 | 0.9614 | nan | nan | 0.9768 | 0.8911 | 0.9444 | nan | 0.9706 | nan | nan | 0.9106 | 0.8122 | 0.7924 | nan | 0.9633 |
0.1527 | 12.0 | 60 | 0.1869 | 0.8769 | 0.9470 | 0.9634 | nan | nan | 0.9776 | 0.9023 | 0.9364 | nan | 0.9718 | nan | nan | 0.9180 | 0.8165 | 0.8085 | nan | 0.9647 |
0.1329 | 16.0 | 80 | 0.1787 | 0.8783 | 0.9429 | 0.9634 | nan | nan | 0.9772 | 0.8880 | 0.9314 | nan | 0.9749 | nan | nan | 0.9126 | 0.8117 | 0.8229 | nan | 0.9661 |
0.1746 | 20.0 | 100 | 0.1651 | 0.8864 | 0.9511 | 0.9668 | nan | nan | 0.9771 | 0.9126 | 0.9395 | nan | 0.9751 | nan | nan | 0.9258 | 0.8369 | 0.8157 | nan | 0.9671 |
0.1218 | 24.0 | 120 | 0.1652 | 0.8798 | 0.9444 | 0.9643 | nan | nan | 0.9791 | 0.8858 | 0.9370 | nan | 0.9757 | nan | nan | 0.9140 | 0.8156 | 0.8224 | nan | 0.9673 |
0.0816 | 28.0 | 140 | 0.1473 | 0.8921 | 0.9521 | 0.9684 | nan | nan | 0.9723 | 0.9199 | 0.9383 | nan | 0.9780 | nan | nan | 0.9299 | 0.8478 | 0.8231 | nan | 0.9676 |
0.0893 | 32.0 | 160 | 0.1490 | 0.8892 | 0.9502 | 0.9672 | nan | nan | 0.9749 | 0.9140 | 0.9354 | nan | 0.9766 | nan | nan | 0.9260 | 0.8384 | 0.825 | nan | 0.9673 |
0.0849 | 36.0 | 180 | 0.1517 | 0.8861 | 0.9476 | 0.9660 | nan | nan | 0.9791 | 0.8987 | 0.9367 | nan | 0.9760 | nan | nan | 0.9205 | 0.8258 | 0.8308 | nan | 0.9674 |
0.1625 | 40.0 | 200 | 0.1519 | 0.8843 | 0.9468 | 0.9654 | nan | nan | 0.9777 | 0.8938 | 0.9394 | nan | 0.9763 | nan | nan | 0.9176 | 0.8235 | 0.8289 | nan | 0.9673 |
0.1396 | 44.0 | 220 | 0.1500 | 0.8850 | 0.9476 | 0.9655 | nan | nan | 0.9791 | 0.8949 | 0.9408 | nan | 0.9757 | nan | nan | 0.9187 | 0.8223 | 0.8317 | nan | 0.9674 |
0.0931 | 48.0 | 240 | 0.1441 | 0.8861 | 0.9456 | 0.9660 | nan | nan | 0.9769 | 0.8930 | 0.9347 | nan | 0.9779 | nan | nan | 0.9197 | 0.8250 | 0.8319 | nan | 0.9678 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for johanhag/segformer-b0-winter
Base model
nvidia/mit-b0