yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7802
  • Map: 0.5723
  • Map 50: 0.8451
  • Map 75: 0.6363
  • Map Small: -1.0
  • Map Medium: 0.484
  • Map Large: 0.6055
  • Mar 1: 0.4374
  • Mar 10: 0.7067
  • Mar 100: 0.7616
  • Mar Small: -1.0
  • Mar Medium: 0.65
  • Mar Large: 0.7783
  • Map Banana: 0.452
  • Mar 100 Banana: 0.75
  • Map Orange: 0.6075
  • Mar 100 Orange: 0.7548
  • Map Apple: 0.6572
  • Mar 100 Apple: 0.78

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.8839 0.0151 0.035 0.0102 -1.0 0.0071 0.0158 0.0433 0.174 0.3412 -1.0 0.15 0.3636 0.0356 0.455 0.0 0.0 0.0096 0.5686
No log 2.0 120 1.8041 0.0206 0.0564 0.0114 -1.0 0.0393 0.0218 0.0939 0.2768 0.456 -1.0 0.2143 0.4914 0.0192 0.49 0.0228 0.2524 0.0197 0.6257
No log 3.0 180 1.6517 0.0482 0.1078 0.0372 -1.0 0.0798 0.0445 0.1727 0.3357 0.4513 -1.0 0.2357 0.4786 0.0475 0.525 0.0437 0.2405 0.0535 0.5886
No log 4.0 240 1.5563 0.0649 0.1434 0.049 -1.0 0.1212 0.0662 0.1816 0.3822 0.4952 -1.0 0.3857 0.5092 0.0513 0.5275 0.0634 0.2667 0.0801 0.6914
No log 5.0 300 1.2156 0.1057 0.2075 0.0922 -1.0 0.1933 0.103 0.2613 0.477 0.6002 -1.0 0.4643 0.6156 0.0814 0.6625 0.1039 0.4524 0.1319 0.6857
No log 6.0 360 1.1876 0.162 0.3136 0.1615 -1.0 0.238 0.1604 0.2951 0.521 0.6296 -1.0 0.4714 0.6508 0.1242 0.6375 0.0967 0.5286 0.2652 0.7229
No log 7.0 420 1.1737 0.2284 0.4074 0.2292 -1.0 0.3218 0.2288 0.3099 0.5612 0.6567 -1.0 0.4714 0.6839 0.1635 0.6625 0.147 0.5762 0.3746 0.7314
No log 8.0 480 1.1454 0.2969 0.5126 0.3347 -1.0 0.3079 0.3194 0.3143 0.5577 0.6561 -1.0 0.5357 0.6721 0.1602 0.665 0.2919 0.669 0.4388 0.6343
1.411 9.0 540 0.9437 0.3953 0.6318 0.4457 -1.0 0.3366 0.4272 0.3424 0.6331 0.709 -1.0 0.6286 0.7202 0.2751 0.715 0.3681 0.6976 0.5427 0.7143
1.411 10.0 600 0.9028 0.4211 0.6613 0.461 -1.0 0.455 0.4387 0.3735 0.6525 0.7228 -1.0 0.6286 0.7362 0.2967 0.715 0.3931 0.719 0.5736 0.7343
1.411 11.0 660 1.0194 0.4217 0.7241 0.4799 -1.0 0.4133 0.4395 0.3629 0.6289 0.6942 -1.0 0.5714 0.7124 0.3336 0.695 0.4192 0.7048 0.5122 0.6829
1.411 12.0 720 0.9372 0.4906 0.7778 0.5509 -1.0 0.4086 0.5268 0.4026 0.6594 0.7213 -1.0 0.5929 0.7419 0.4073 0.69 0.4834 0.7024 0.581 0.7714
1.411 13.0 780 0.9137 0.4916 0.7643 0.5723 -1.0 0.45 0.5199 0.4011 0.6586 0.7295 -1.0 0.6429 0.743 0.415 0.7175 0.5152 0.731 0.5445 0.74
1.411 14.0 840 0.8580 0.5306 0.8134 0.5778 -1.0 0.4952 0.5559 0.425 0.685 0.7589 -1.0 0.6571 0.7758 0.4265 0.7325 0.5243 0.7786 0.6411 0.7657
1.411 15.0 900 0.8967 0.5236 0.8181 0.6103 -1.0 0.469 0.5514 0.4101 0.6783 0.7312 -1.0 0.5929 0.7525 0.4219 0.7125 0.5312 0.7238 0.6177 0.7571
1.411 16.0 960 0.8778 0.5241 0.8013 0.5901 -1.0 0.4871 0.5446 0.4208 0.699 0.7455 -1.0 0.6214 0.7643 0.4117 0.725 0.5706 0.7429 0.5899 0.7686
0.7858 17.0 1020 0.8476 0.5039 0.783 0.5667 -1.0 0.4699 0.5326 0.4073 0.6878 0.7543 -1.0 0.6643 0.7685 0.416 0.7425 0.5701 0.769 0.5256 0.7514
0.7858 18.0 1080 0.9041 0.5146 0.8275 0.5511 -1.0 0.4508 0.5397 0.3989 0.6648 0.729 -1.0 0.6143 0.7457 0.403 0.725 0.5205 0.7048 0.6203 0.7571
0.7858 19.0 1140 0.8435 0.544 0.8261 0.6076 -1.0 0.4914 0.5709 0.4242 0.7013 0.7507 -1.0 0.6214 0.7717 0.4215 0.725 0.5881 0.75 0.6223 0.7771
0.7858 20.0 1200 0.8894 0.5477 0.8387 0.6289 -1.0 0.5427 0.567 0.4225 0.6957 0.746 -1.0 0.6571 0.7598 0.4285 0.725 0.5877 0.7357 0.627 0.7771
0.7858 21.0 1260 0.8094 0.5659 0.842 0.6315 -1.0 0.5229 0.5918 0.4287 0.7035 0.7536 -1.0 0.6643 0.7675 0.4543 0.7375 0.5878 0.7405 0.6556 0.7829
0.7858 22.0 1320 0.8241 0.5567 0.8364 0.6346 -1.0 0.513 0.5809 0.4244 0.7016 0.7631 -1.0 0.6357 0.7815 0.4409 0.7625 0.5824 0.7524 0.6467 0.7743
0.7858 23.0 1380 0.7842 0.5771 0.8503 0.6381 -1.0 0.5139 0.6093 0.44 0.7127 0.7673 -1.0 0.6714 0.7833 0.45 0.74 0.6284 0.7762 0.6529 0.7857
0.7858 24.0 1440 0.8005 0.57 0.8417 0.6369 -1.0 0.5188 0.5991 0.4368 0.7046 0.7583 -1.0 0.65 0.7755 0.4499 0.74 0.6022 0.7548 0.658 0.78
0.6093 25.0 1500 0.7817 0.5798 0.8506 0.6426 -1.0 0.5017 0.6115 0.4394 0.7155 0.7663 -1.0 0.6571 0.7826 0.4568 0.755 0.615 0.7524 0.6676 0.7914
0.6093 26.0 1560 0.7840 0.5755 0.8545 0.6383 -1.0 0.4808 0.6099 0.4374 0.7108 0.7634 -1.0 0.6571 0.7802 0.4463 0.745 0.6228 0.7595 0.6573 0.7857
0.6093 27.0 1620 0.7796 0.571 0.8461 0.6362 -1.0 0.4833 0.6065 0.4351 0.7069 0.7625 -1.0 0.65 0.7798 0.4481 0.75 0.6121 0.7548 0.6528 0.7829
0.6093 28.0 1680 0.7807 0.5709 0.8458 0.6341 -1.0 0.4836 0.6059 0.4374 0.7059 0.7632 -1.0 0.65 0.7804 0.4504 0.7525 0.6101 0.7571 0.6521 0.78
0.6093 29.0 1740 0.7801 0.573 0.845 0.6362 -1.0 0.484 0.6064 0.4374 0.7067 0.7608 -1.0 0.65 0.7775 0.451 0.7475 0.6109 0.7548 0.6572 0.78
0.6093 30.0 1800 0.7802 0.5723 0.8451 0.6363 -1.0 0.484 0.6055 0.4374 0.7067 0.7616 -1.0 0.65 0.7783 0.452 0.75 0.6075 0.7548 0.6572 0.78

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jojimene/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(31)
this model