yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7802
- Map: 0.5723
- Map 50: 0.8451
- Map 75: 0.6363
- Map Small: -1.0
- Map Medium: 0.484
- Map Large: 0.6055
- Mar 1: 0.4374
- Mar 10: 0.7067
- Mar 100: 0.7616
- Mar Small: -1.0
- Mar Medium: 0.65
- Mar Large: 0.7783
- Map Banana: 0.452
- Mar 100 Banana: 0.75
- Map Orange: 0.6075
- Mar 100 Orange: 0.7548
- Map Apple: 0.6572
- Mar 100 Apple: 0.78
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 1.8839 | 0.0151 | 0.035 | 0.0102 | -1.0 | 0.0071 | 0.0158 | 0.0433 | 0.174 | 0.3412 | -1.0 | 0.15 | 0.3636 | 0.0356 | 0.455 | 0.0 | 0.0 | 0.0096 | 0.5686 |
No log | 2.0 | 120 | 1.8041 | 0.0206 | 0.0564 | 0.0114 | -1.0 | 0.0393 | 0.0218 | 0.0939 | 0.2768 | 0.456 | -1.0 | 0.2143 | 0.4914 | 0.0192 | 0.49 | 0.0228 | 0.2524 | 0.0197 | 0.6257 |
No log | 3.0 | 180 | 1.6517 | 0.0482 | 0.1078 | 0.0372 | -1.0 | 0.0798 | 0.0445 | 0.1727 | 0.3357 | 0.4513 | -1.0 | 0.2357 | 0.4786 | 0.0475 | 0.525 | 0.0437 | 0.2405 | 0.0535 | 0.5886 |
No log | 4.0 | 240 | 1.5563 | 0.0649 | 0.1434 | 0.049 | -1.0 | 0.1212 | 0.0662 | 0.1816 | 0.3822 | 0.4952 | -1.0 | 0.3857 | 0.5092 | 0.0513 | 0.5275 | 0.0634 | 0.2667 | 0.0801 | 0.6914 |
No log | 5.0 | 300 | 1.2156 | 0.1057 | 0.2075 | 0.0922 | -1.0 | 0.1933 | 0.103 | 0.2613 | 0.477 | 0.6002 | -1.0 | 0.4643 | 0.6156 | 0.0814 | 0.6625 | 0.1039 | 0.4524 | 0.1319 | 0.6857 |
No log | 6.0 | 360 | 1.1876 | 0.162 | 0.3136 | 0.1615 | -1.0 | 0.238 | 0.1604 | 0.2951 | 0.521 | 0.6296 | -1.0 | 0.4714 | 0.6508 | 0.1242 | 0.6375 | 0.0967 | 0.5286 | 0.2652 | 0.7229 |
No log | 7.0 | 420 | 1.1737 | 0.2284 | 0.4074 | 0.2292 | -1.0 | 0.3218 | 0.2288 | 0.3099 | 0.5612 | 0.6567 | -1.0 | 0.4714 | 0.6839 | 0.1635 | 0.6625 | 0.147 | 0.5762 | 0.3746 | 0.7314 |
No log | 8.0 | 480 | 1.1454 | 0.2969 | 0.5126 | 0.3347 | -1.0 | 0.3079 | 0.3194 | 0.3143 | 0.5577 | 0.6561 | -1.0 | 0.5357 | 0.6721 | 0.1602 | 0.665 | 0.2919 | 0.669 | 0.4388 | 0.6343 |
1.411 | 9.0 | 540 | 0.9437 | 0.3953 | 0.6318 | 0.4457 | -1.0 | 0.3366 | 0.4272 | 0.3424 | 0.6331 | 0.709 | -1.0 | 0.6286 | 0.7202 | 0.2751 | 0.715 | 0.3681 | 0.6976 | 0.5427 | 0.7143 |
1.411 | 10.0 | 600 | 0.9028 | 0.4211 | 0.6613 | 0.461 | -1.0 | 0.455 | 0.4387 | 0.3735 | 0.6525 | 0.7228 | -1.0 | 0.6286 | 0.7362 | 0.2967 | 0.715 | 0.3931 | 0.719 | 0.5736 | 0.7343 |
1.411 | 11.0 | 660 | 1.0194 | 0.4217 | 0.7241 | 0.4799 | -1.0 | 0.4133 | 0.4395 | 0.3629 | 0.6289 | 0.6942 | -1.0 | 0.5714 | 0.7124 | 0.3336 | 0.695 | 0.4192 | 0.7048 | 0.5122 | 0.6829 |
1.411 | 12.0 | 720 | 0.9372 | 0.4906 | 0.7778 | 0.5509 | -1.0 | 0.4086 | 0.5268 | 0.4026 | 0.6594 | 0.7213 | -1.0 | 0.5929 | 0.7419 | 0.4073 | 0.69 | 0.4834 | 0.7024 | 0.581 | 0.7714 |
1.411 | 13.0 | 780 | 0.9137 | 0.4916 | 0.7643 | 0.5723 | -1.0 | 0.45 | 0.5199 | 0.4011 | 0.6586 | 0.7295 | -1.0 | 0.6429 | 0.743 | 0.415 | 0.7175 | 0.5152 | 0.731 | 0.5445 | 0.74 |
1.411 | 14.0 | 840 | 0.8580 | 0.5306 | 0.8134 | 0.5778 | -1.0 | 0.4952 | 0.5559 | 0.425 | 0.685 | 0.7589 | -1.0 | 0.6571 | 0.7758 | 0.4265 | 0.7325 | 0.5243 | 0.7786 | 0.6411 | 0.7657 |
1.411 | 15.0 | 900 | 0.8967 | 0.5236 | 0.8181 | 0.6103 | -1.0 | 0.469 | 0.5514 | 0.4101 | 0.6783 | 0.7312 | -1.0 | 0.5929 | 0.7525 | 0.4219 | 0.7125 | 0.5312 | 0.7238 | 0.6177 | 0.7571 |
1.411 | 16.0 | 960 | 0.8778 | 0.5241 | 0.8013 | 0.5901 | -1.0 | 0.4871 | 0.5446 | 0.4208 | 0.699 | 0.7455 | -1.0 | 0.6214 | 0.7643 | 0.4117 | 0.725 | 0.5706 | 0.7429 | 0.5899 | 0.7686 |
0.7858 | 17.0 | 1020 | 0.8476 | 0.5039 | 0.783 | 0.5667 | -1.0 | 0.4699 | 0.5326 | 0.4073 | 0.6878 | 0.7543 | -1.0 | 0.6643 | 0.7685 | 0.416 | 0.7425 | 0.5701 | 0.769 | 0.5256 | 0.7514 |
0.7858 | 18.0 | 1080 | 0.9041 | 0.5146 | 0.8275 | 0.5511 | -1.0 | 0.4508 | 0.5397 | 0.3989 | 0.6648 | 0.729 | -1.0 | 0.6143 | 0.7457 | 0.403 | 0.725 | 0.5205 | 0.7048 | 0.6203 | 0.7571 |
0.7858 | 19.0 | 1140 | 0.8435 | 0.544 | 0.8261 | 0.6076 | -1.0 | 0.4914 | 0.5709 | 0.4242 | 0.7013 | 0.7507 | -1.0 | 0.6214 | 0.7717 | 0.4215 | 0.725 | 0.5881 | 0.75 | 0.6223 | 0.7771 |
0.7858 | 20.0 | 1200 | 0.8894 | 0.5477 | 0.8387 | 0.6289 | -1.0 | 0.5427 | 0.567 | 0.4225 | 0.6957 | 0.746 | -1.0 | 0.6571 | 0.7598 | 0.4285 | 0.725 | 0.5877 | 0.7357 | 0.627 | 0.7771 |
0.7858 | 21.0 | 1260 | 0.8094 | 0.5659 | 0.842 | 0.6315 | -1.0 | 0.5229 | 0.5918 | 0.4287 | 0.7035 | 0.7536 | -1.0 | 0.6643 | 0.7675 | 0.4543 | 0.7375 | 0.5878 | 0.7405 | 0.6556 | 0.7829 |
0.7858 | 22.0 | 1320 | 0.8241 | 0.5567 | 0.8364 | 0.6346 | -1.0 | 0.513 | 0.5809 | 0.4244 | 0.7016 | 0.7631 | -1.0 | 0.6357 | 0.7815 | 0.4409 | 0.7625 | 0.5824 | 0.7524 | 0.6467 | 0.7743 |
0.7858 | 23.0 | 1380 | 0.7842 | 0.5771 | 0.8503 | 0.6381 | -1.0 | 0.5139 | 0.6093 | 0.44 | 0.7127 | 0.7673 | -1.0 | 0.6714 | 0.7833 | 0.45 | 0.74 | 0.6284 | 0.7762 | 0.6529 | 0.7857 |
0.7858 | 24.0 | 1440 | 0.8005 | 0.57 | 0.8417 | 0.6369 | -1.0 | 0.5188 | 0.5991 | 0.4368 | 0.7046 | 0.7583 | -1.0 | 0.65 | 0.7755 | 0.4499 | 0.74 | 0.6022 | 0.7548 | 0.658 | 0.78 |
0.6093 | 25.0 | 1500 | 0.7817 | 0.5798 | 0.8506 | 0.6426 | -1.0 | 0.5017 | 0.6115 | 0.4394 | 0.7155 | 0.7663 | -1.0 | 0.6571 | 0.7826 | 0.4568 | 0.755 | 0.615 | 0.7524 | 0.6676 | 0.7914 |
0.6093 | 26.0 | 1560 | 0.7840 | 0.5755 | 0.8545 | 0.6383 | -1.0 | 0.4808 | 0.6099 | 0.4374 | 0.7108 | 0.7634 | -1.0 | 0.6571 | 0.7802 | 0.4463 | 0.745 | 0.6228 | 0.7595 | 0.6573 | 0.7857 |
0.6093 | 27.0 | 1620 | 0.7796 | 0.571 | 0.8461 | 0.6362 | -1.0 | 0.4833 | 0.6065 | 0.4351 | 0.7069 | 0.7625 | -1.0 | 0.65 | 0.7798 | 0.4481 | 0.75 | 0.6121 | 0.7548 | 0.6528 | 0.7829 |
0.6093 | 28.0 | 1680 | 0.7807 | 0.5709 | 0.8458 | 0.6341 | -1.0 | 0.4836 | 0.6059 | 0.4374 | 0.7059 | 0.7632 | -1.0 | 0.65 | 0.7804 | 0.4504 | 0.7525 | 0.6101 | 0.7571 | 0.6521 | 0.78 |
0.6093 | 29.0 | 1740 | 0.7801 | 0.573 | 0.845 | 0.6362 | -1.0 | 0.484 | 0.6064 | 0.4374 | 0.7067 | 0.7608 | -1.0 | 0.65 | 0.7775 | 0.451 | 0.7475 | 0.6109 | 0.7548 | 0.6572 | 0.78 |
0.6093 | 30.0 | 1800 | 0.7802 | 0.5723 | 0.8451 | 0.6363 | -1.0 | 0.484 | 0.6055 | 0.4374 | 0.7067 | 0.7616 | -1.0 | 0.65 | 0.7783 | 0.452 | 0.75 | 0.6075 | 0.7548 | 0.6572 | 0.78 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jojimene/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny