Qwen2.5-7B SSML LoRA Adapter
This is a LoRA (Low-Rank Adaptation) fine-tuned version of Qwen2.5-7B for converting plain text to SSML (Speech Synthesis Markup Language) with appropriate pause predictions.
Model Details
- Base Model: Qwen/Qwen2.5-7B
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Task: Text-to-SSML conversion with pause prediction
- Languages: English, French (and others supported by base model)
Usage
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-7B",
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "jonahdvt/qwen-ssml-lora")
# Prepare input
instruction = "Convert text to SSML with pauses:"
text = "Hello, how are you today? I hope everything is going well."
formatted_input = f"### Task:\n{instruction}\n\n### Text:\n{text}\n\n### SSML:\n"
# Generate
inputs = tokenizer(formatted_input, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
ssml_output = response.split("### SSML:\n")[-1]
print(ssml_output)
Training Details
- LoRA Rank: 8
- LoRA Alpha: 16
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Training Epochs: 5
- Batch Size: 1 (with gradient accumulation)
- Learning Rate: 3e-4
License
This model is released under the Apache 2.0 license, same as the base Qwen2.5-7B model.
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jonahdvt/qwen-text2breaks-lora
Base model
Qwen/Qwen2.5-7B