|
--- |
|
library_name: peft |
|
license: cc-by-nc-4.0 |
|
base_model: mental/mental-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: mental-roberta_depression |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mental-roberta_depression |
|
|
|
This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5389 |
|
- Accuracy: 0.7679 |
|
- Precision: 0.7676 |
|
- Recall: 0.7679 |
|
- F1: 0.7674 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.8254 | 1.0 | 969 | 0.5788 | 0.7473 | 0.7463 | 0.7473 | 0.7465 | |
|
| 0.5832 | 2.0 | 1938 | 0.5451 | 0.7671 | 0.7671 | 0.7671 | 0.7664 | |
|
| 0.5514 | 3.0 | 2907 | 0.5389 | 0.7679 | 0.7676 | 0.7679 | 0.7674 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |