60-tiny_tobacco3482_kd_CEKD_t2.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4631
- Accuracy: 0.81
- Brier Loss: 0.3427
- Nll: 0.9896
- F1 Micro: 0.81
- F1 Macro: 0.7794
- Ece: 0.3002
- Aurc: 0.0534
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 2.0115 | 0.1 | 1.0070 | 8.1872 | 0.1000 | 0.0765 | 0.3197 | 0.8958 |
No log | 2.0 | 14 | 1.3480 | 0.19 | 0.8667 | 5.2268 | 0.19 | 0.1599 | 0.2694 | 0.7716 |
No log | 3.0 | 21 | 1.0745 | 0.38 | 0.7608 | 4.8555 | 0.38 | 0.3111 | 0.2804 | 0.4226 |
No log | 4.0 | 28 | 0.8841 | 0.57 | 0.6204 | 2.8740 | 0.57 | 0.4526 | 0.2904 | 0.2536 |
No log | 5.0 | 35 | 0.7962 | 0.63 | 0.5646 | 2.4082 | 0.63 | 0.5462 | 0.3178 | 0.2005 |
No log | 6.0 | 42 | 0.7065 | 0.68 | 0.4894 | 2.3364 | 0.68 | 0.5773 | 0.2660 | 0.1461 |
No log | 7.0 | 49 | 0.6639 | 0.7 | 0.4548 | 1.8260 | 0.7 | 0.6412 | 0.2748 | 0.1340 |
No log | 8.0 | 56 | 0.6374 | 0.745 | 0.4265 | 1.8720 | 0.745 | 0.6620 | 0.3127 | 0.1047 |
No log | 9.0 | 63 | 0.6184 | 0.73 | 0.4136 | 1.7957 | 0.7300 | 0.6650 | 0.3022 | 0.0845 |
No log | 10.0 | 70 | 0.5569 | 0.8 | 0.3838 | 1.2127 | 0.8000 | 0.7683 | 0.3047 | 0.0721 |
No log | 11.0 | 77 | 0.5225 | 0.815 | 0.3514 | 1.0539 | 0.815 | 0.7871 | 0.2818 | 0.0625 |
No log | 12.0 | 84 | 0.5330 | 0.795 | 0.3609 | 1.0544 | 0.795 | 0.7695 | 0.2723 | 0.0786 |
No log | 13.0 | 91 | 0.5241 | 0.78 | 0.3615 | 1.1338 | 0.78 | 0.7599 | 0.2681 | 0.0726 |
No log | 14.0 | 98 | 0.5345 | 0.795 | 0.3640 | 1.1229 | 0.795 | 0.7527 | 0.2950 | 0.0661 |
No log | 15.0 | 105 | 0.5042 | 0.8 | 0.3459 | 1.1690 | 0.8000 | 0.7664 | 0.2915 | 0.0664 |
No log | 16.0 | 112 | 0.5285 | 0.795 | 0.3779 | 1.1973 | 0.795 | 0.7468 | 0.3056 | 0.0647 |
No log | 17.0 | 119 | 0.5374 | 0.77 | 0.3716 | 1.5324 | 0.7700 | 0.7406 | 0.2658 | 0.0910 |
No log | 18.0 | 126 | 0.5132 | 0.79 | 0.3677 | 1.1252 | 0.79 | 0.7699 | 0.2842 | 0.0722 |
No log | 19.0 | 133 | 0.4961 | 0.815 | 0.3558 | 0.8880 | 0.815 | 0.7941 | 0.2985 | 0.0611 |
No log | 20.0 | 140 | 0.4971 | 0.82 | 0.3556 | 1.0845 | 0.82 | 0.8049 | 0.3045 | 0.0631 |
No log | 21.0 | 147 | 0.4791 | 0.835 | 0.3328 | 0.9109 | 0.835 | 0.8168 | 0.2803 | 0.0534 |
No log | 22.0 | 154 | 0.4953 | 0.805 | 0.3531 | 1.0087 | 0.805 | 0.7758 | 0.3015 | 0.0642 |
No log | 23.0 | 161 | 0.4962 | 0.825 | 0.3543 | 0.8886 | 0.825 | 0.8091 | 0.3085 | 0.0672 |
No log | 24.0 | 168 | 0.4753 | 0.82 | 0.3435 | 1.0609 | 0.82 | 0.8025 | 0.2994 | 0.0508 |
No log | 25.0 | 175 | 0.4856 | 0.825 | 0.3495 | 1.1336 | 0.825 | 0.7846 | 0.3018 | 0.0539 |
No log | 26.0 | 182 | 0.4824 | 0.805 | 0.3499 | 1.0142 | 0.805 | 0.7890 | 0.3000 | 0.0577 |
No log | 27.0 | 189 | 0.4843 | 0.83 | 0.3506 | 0.7550 | 0.83 | 0.8090 | 0.3163 | 0.0556 |
No log | 28.0 | 196 | 0.4728 | 0.825 | 0.3451 | 1.1111 | 0.825 | 0.8012 | 0.3006 | 0.0554 |
No log | 29.0 | 203 | 0.4844 | 0.8 | 0.3483 | 1.2220 | 0.8000 | 0.7750 | 0.2913 | 0.0609 |
No log | 30.0 | 210 | 0.4728 | 0.815 | 0.3478 | 1.1306 | 0.815 | 0.7840 | 0.3051 | 0.0540 |
No log | 31.0 | 217 | 0.4694 | 0.83 | 0.3411 | 0.8267 | 0.83 | 0.8156 | 0.3101 | 0.0474 |
No log | 32.0 | 224 | 0.4685 | 0.82 | 0.3406 | 1.0564 | 0.82 | 0.7909 | 0.3269 | 0.0529 |
No log | 33.0 | 231 | 0.4692 | 0.81 | 0.3407 | 0.8508 | 0.81 | 0.7900 | 0.2838 | 0.0517 |
No log | 34.0 | 238 | 0.4647 | 0.815 | 0.3404 | 1.0430 | 0.815 | 0.7894 | 0.3098 | 0.0563 |
No log | 35.0 | 245 | 0.4761 | 0.795 | 0.3503 | 1.0340 | 0.795 | 0.7687 | 0.2731 | 0.0594 |
No log | 36.0 | 252 | 0.4802 | 0.83 | 0.3571 | 0.8575 | 0.83 | 0.8046 | 0.3275 | 0.0511 |
No log | 37.0 | 259 | 0.4686 | 0.8 | 0.3414 | 0.8818 | 0.8000 | 0.7836 | 0.3020 | 0.0560 |
No log | 38.0 | 266 | 0.4612 | 0.815 | 0.3361 | 0.9901 | 0.815 | 0.7807 | 0.2988 | 0.0528 |
No log | 39.0 | 273 | 0.4721 | 0.81 | 0.3475 | 0.9803 | 0.81 | 0.7875 | 0.3019 | 0.0576 |
No log | 40.0 | 280 | 0.4646 | 0.83 | 0.3425 | 0.8495 | 0.83 | 0.8059 | 0.3063 | 0.0507 |
No log | 41.0 | 287 | 0.4622 | 0.805 | 0.3396 | 1.0087 | 0.805 | 0.7688 | 0.2903 | 0.0558 |
No log | 42.0 | 294 | 0.4599 | 0.82 | 0.3375 | 0.9166 | 0.82 | 0.7996 | 0.3319 | 0.0533 |
No log | 43.0 | 301 | 0.4688 | 0.805 | 0.3475 | 1.0195 | 0.805 | 0.7771 | 0.2994 | 0.0573 |
No log | 44.0 | 308 | 0.4652 | 0.805 | 0.3437 | 0.9095 | 0.805 | 0.7809 | 0.3134 | 0.0545 |
No log | 45.0 | 315 | 0.4641 | 0.81 | 0.3418 | 0.8922 | 0.81 | 0.7806 | 0.3014 | 0.0550 |
No log | 46.0 | 322 | 0.4579 | 0.825 | 0.3361 | 0.9516 | 0.825 | 0.7956 | 0.2971 | 0.0490 |
No log | 47.0 | 329 | 0.4638 | 0.82 | 0.3423 | 0.8830 | 0.82 | 0.7961 | 0.3259 | 0.0557 |
No log | 48.0 | 336 | 0.4643 | 0.81 | 0.3434 | 1.0046 | 0.81 | 0.7789 | 0.3042 | 0.0541 |
No log | 49.0 | 343 | 0.4596 | 0.81 | 0.3388 | 0.9862 | 0.81 | 0.7835 | 0.3170 | 0.0532 |
No log | 50.0 | 350 | 0.4603 | 0.815 | 0.3399 | 0.9288 | 0.815 | 0.7963 | 0.3031 | 0.0533 |
No log | 51.0 | 357 | 0.4610 | 0.815 | 0.3403 | 0.9900 | 0.815 | 0.7898 | 0.3306 | 0.0546 |
No log | 52.0 | 364 | 0.4617 | 0.81 | 0.3412 | 0.9834 | 0.81 | 0.7793 | 0.3079 | 0.0533 |
No log | 53.0 | 371 | 0.4627 | 0.815 | 0.3423 | 0.9901 | 0.815 | 0.7898 | 0.3023 | 0.0543 |
No log | 54.0 | 378 | 0.4612 | 0.815 | 0.3415 | 0.9868 | 0.815 | 0.7962 | 0.3178 | 0.0534 |
No log | 55.0 | 385 | 0.4617 | 0.815 | 0.3416 | 0.9904 | 0.815 | 0.7898 | 0.3117 | 0.0533 |
No log | 56.0 | 392 | 0.4605 | 0.81 | 0.3399 | 0.9845 | 0.81 | 0.7793 | 0.3069 | 0.0535 |
No log | 57.0 | 399 | 0.4606 | 0.81 | 0.3405 | 0.9818 | 0.81 | 0.7793 | 0.3045 | 0.0531 |
No log | 58.0 | 406 | 0.4614 | 0.81 | 0.3413 | 0.9853 | 0.81 | 0.7793 | 0.3114 | 0.0537 |
No log | 59.0 | 413 | 0.4623 | 0.81 | 0.3424 | 0.9848 | 0.81 | 0.7793 | 0.3045 | 0.0534 |
No log | 60.0 | 420 | 0.4621 | 0.81 | 0.3421 | 0.9898 | 0.81 | 0.7863 | 0.3150 | 0.0536 |
No log | 61.0 | 427 | 0.4620 | 0.81 | 0.3417 | 0.9868 | 0.81 | 0.7793 | 0.3060 | 0.0534 |
No log | 62.0 | 434 | 0.4618 | 0.81 | 0.3413 | 0.9843 | 0.81 | 0.7793 | 0.3029 | 0.0533 |
No log | 63.0 | 441 | 0.4622 | 0.81 | 0.3419 | 0.9868 | 0.81 | 0.7793 | 0.2969 | 0.0535 |
No log | 64.0 | 448 | 0.4621 | 0.81 | 0.3419 | 0.9881 | 0.81 | 0.7793 | 0.3070 | 0.0542 |
No log | 65.0 | 455 | 0.4625 | 0.81 | 0.3422 | 0.9871 | 0.81 | 0.7794 | 0.3131 | 0.0532 |
No log | 66.0 | 462 | 0.4626 | 0.81 | 0.3423 | 0.9880 | 0.81 | 0.7794 | 0.3066 | 0.0533 |
No log | 67.0 | 469 | 0.4621 | 0.81 | 0.3420 | 0.9872 | 0.81 | 0.7793 | 0.3066 | 0.0536 |
No log | 68.0 | 476 | 0.4624 | 0.81 | 0.3421 | 0.9882 | 0.81 | 0.7794 | 0.2966 | 0.0533 |
No log | 69.0 | 483 | 0.4627 | 0.81 | 0.3425 | 0.9891 | 0.81 | 0.7794 | 0.3160 | 0.0534 |
No log | 70.0 | 490 | 0.4628 | 0.81 | 0.3424 | 0.9899 | 0.81 | 0.7794 | 0.2970 | 0.0533 |
No log | 71.0 | 497 | 0.4627 | 0.81 | 0.3423 | 0.9890 | 0.81 | 0.7794 | 0.2968 | 0.0532 |
0.3139 | 72.0 | 504 | 0.4625 | 0.81 | 0.3423 | 0.9886 | 0.81 | 0.7794 | 0.2971 | 0.0534 |
0.3139 | 73.0 | 511 | 0.4625 | 0.81 | 0.3423 | 0.9892 | 0.81 | 0.7794 | 0.3043 | 0.0535 |
0.3139 | 74.0 | 518 | 0.4626 | 0.81 | 0.3422 | 0.9881 | 0.81 | 0.7794 | 0.2969 | 0.0533 |
0.3139 | 75.0 | 525 | 0.4631 | 0.81 | 0.3428 | 0.9896 | 0.81 | 0.7794 | 0.3142 | 0.0533 |
0.3139 | 76.0 | 532 | 0.4628 | 0.81 | 0.3425 | 0.9893 | 0.81 | 0.7794 | 0.3138 | 0.0532 |
0.3139 | 77.0 | 539 | 0.4627 | 0.81 | 0.3423 | 0.9889 | 0.81 | 0.7794 | 0.3040 | 0.0533 |
0.3139 | 78.0 | 546 | 0.4628 | 0.81 | 0.3425 | 0.9888 | 0.81 | 0.7794 | 0.3138 | 0.0533 |
0.3139 | 79.0 | 553 | 0.4629 | 0.81 | 0.3426 | 0.9898 | 0.81 | 0.7794 | 0.3002 | 0.0535 |
0.3139 | 80.0 | 560 | 0.4630 | 0.81 | 0.3426 | 0.9892 | 0.81 | 0.7794 | 0.3041 | 0.0534 |
0.3139 | 81.0 | 567 | 0.4631 | 0.81 | 0.3428 | 0.9899 | 0.81 | 0.7794 | 0.3042 | 0.0534 |
0.3139 | 82.0 | 574 | 0.4628 | 0.81 | 0.3424 | 0.9889 | 0.81 | 0.7794 | 0.3039 | 0.0532 |
0.3139 | 83.0 | 581 | 0.4630 | 0.81 | 0.3427 | 0.9893 | 0.81 | 0.7794 | 0.3068 | 0.0533 |
0.3139 | 84.0 | 588 | 0.4629 | 0.81 | 0.3426 | 0.9894 | 0.81 | 0.7794 | 0.3069 | 0.0534 |
0.3139 | 85.0 | 595 | 0.4629 | 0.81 | 0.3425 | 0.9893 | 0.81 | 0.7794 | 0.3138 | 0.0535 |
0.3139 | 86.0 | 602 | 0.4630 | 0.81 | 0.3427 | 0.9896 | 0.81 | 0.7794 | 0.3070 | 0.0533 |
0.3139 | 87.0 | 609 | 0.4630 | 0.81 | 0.3426 | 0.9890 | 0.81 | 0.7794 | 0.3069 | 0.0534 |
0.3139 | 88.0 | 616 | 0.4630 | 0.81 | 0.3426 | 0.9893 | 0.81 | 0.7794 | 0.3069 | 0.0533 |
0.3139 | 89.0 | 623 | 0.4630 | 0.81 | 0.3426 | 0.9897 | 0.81 | 0.7794 | 0.3001 | 0.0535 |
0.3139 | 90.0 | 630 | 0.4631 | 0.81 | 0.3428 | 0.9902 | 0.81 | 0.7794 | 0.2904 | 0.0534 |
0.3139 | 91.0 | 637 | 0.4631 | 0.81 | 0.3427 | 0.9892 | 0.81 | 0.7794 | 0.3139 | 0.0533 |
0.3139 | 92.0 | 644 | 0.4631 | 0.81 | 0.3427 | 0.9894 | 0.81 | 0.7794 | 0.3071 | 0.0535 |
0.3139 | 93.0 | 651 | 0.4631 | 0.81 | 0.3428 | 0.9899 | 0.81 | 0.7794 | 0.3001 | 0.0534 |
0.3139 | 94.0 | 658 | 0.4630 | 0.81 | 0.3427 | 0.9894 | 0.81 | 0.7794 | 0.3069 | 0.0534 |
0.3139 | 95.0 | 665 | 0.4631 | 0.81 | 0.3428 | 0.9896 | 0.81 | 0.7794 | 0.3071 | 0.0534 |
0.3139 | 96.0 | 672 | 0.4630 | 0.81 | 0.3427 | 0.9893 | 0.81 | 0.7794 | 0.3070 | 0.0534 |
0.3139 | 97.0 | 679 | 0.4631 | 0.81 | 0.3427 | 0.9895 | 0.81 | 0.7794 | 0.3002 | 0.0535 |
0.3139 | 98.0 | 686 | 0.4631 | 0.81 | 0.3428 | 0.9899 | 0.81 | 0.7794 | 0.3002 | 0.0534 |
0.3139 | 99.0 | 693 | 0.4631 | 0.81 | 0.3427 | 0.9897 | 0.81 | 0.7794 | 0.3002 | 0.0534 |
0.3139 | 100.0 | 700 | 0.4631 | 0.81 | 0.3427 | 0.9896 | 0.81 | 0.7794 | 0.3002 | 0.0534 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 165
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.