81-tiny_tobacco3482_kd_CEKD_t2.5_a0.5

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4383
  • Accuracy: 0.815
  • Brier Loss: 0.3137
  • Nll: 0.9180
  • F1 Micro: 0.815
  • F1 Macro: 0.7935
  • Ece: 0.2739
  • Aurc: 0.0546

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 7 2.1414 0.1 1.0055 8.0967 0.1000 0.0761 0.3253 0.8939
No log 2.0 14 1.4539 0.215 0.8614 5.0189 0.2150 0.1812 0.2795 0.7550
No log 3.0 21 1.1486 0.39 0.7467 4.3499 0.39 0.3077 0.2755 0.4066
No log 4.0 28 0.9182 0.575 0.5990 2.9424 0.575 0.4619 0.2988 0.2367
No log 5.0 35 0.8134 0.645 0.5398 2.1261 0.645 0.5549 0.2689 0.1878
No log 6.0 42 0.7149 0.7 0.4612 2.2189 0.7 0.6006 0.2518 0.1316
No log 7.0 49 0.6607 0.73 0.4303 1.7076 0.7300 0.6689 0.2976 0.1200
No log 8.0 56 0.6109 0.755 0.3922 1.7703 0.755 0.6743 0.2638 0.0861
No log 9.0 63 0.6119 0.715 0.3943 1.4194 0.715 0.6534 0.2276 0.0840
No log 10.0 70 0.5462 0.8 0.3535 1.4026 0.8000 0.7760 0.2888 0.0660
No log 11.0 77 0.5376 0.785 0.3481 1.2329 0.785 0.7600 0.2660 0.0757
No log 12.0 84 0.5250 0.785 0.3442 1.1226 0.785 0.7669 0.2476 0.0802
No log 13.0 91 0.5053 0.81 0.3313 1.1038 0.81 0.7824 0.2543 0.0628
No log 14.0 98 0.5188 0.79 0.3497 1.0872 0.79 0.7678 0.2495 0.0759
No log 15.0 105 0.5020 0.805 0.3412 1.4342 0.805 0.7868 0.2669 0.0652
No log 16.0 112 0.5221 0.795 0.3496 1.3609 0.795 0.7473 0.2682 0.0621
No log 17.0 119 0.5046 0.8 0.3372 1.1543 0.8000 0.7766 0.2604 0.0689
No log 18.0 126 0.4733 0.805 0.3248 1.1335 0.805 0.7800 0.2599 0.0582
No log 19.0 133 0.4725 0.815 0.3242 1.1607 0.815 0.7855 0.2733 0.0573
No log 20.0 140 0.4887 0.82 0.3325 1.0316 0.82 0.7998 0.2684 0.0568
No log 21.0 147 0.4708 0.815 0.3205 1.1275 0.815 0.8033 0.2412 0.0663
No log 22.0 154 0.4773 0.83 0.3309 1.1147 0.83 0.8101 0.2739 0.0518
No log 23.0 161 0.4957 0.815 0.3402 1.0884 0.815 0.8012 0.2582 0.0726
No log 24.0 168 0.4666 0.805 0.3305 1.0784 0.805 0.7858 0.2792 0.0560
No log 25.0 175 0.4830 0.795 0.3324 1.1757 0.795 0.7595 0.2505 0.0715
No log 26.0 182 0.4622 0.8 0.3272 1.0698 0.8000 0.7873 0.2795 0.0590
No log 27.0 189 0.4604 0.8 0.3200 1.1104 0.8000 0.7717 0.2561 0.0630
No log 28.0 196 0.4635 0.82 0.3253 1.1271 0.82 0.7903 0.2756 0.0571
No log 29.0 203 0.4590 0.815 0.3211 1.1048 0.815 0.7952 0.2881 0.0567
No log 30.0 210 0.4575 0.795 0.3210 0.9174 0.795 0.7786 0.2833 0.0625
No log 31.0 217 0.4684 0.83 0.3337 0.9485 0.83 0.8093 0.2892 0.0557
No log 32.0 224 0.4520 0.81 0.3208 1.0186 0.81 0.7955 0.2438 0.0577
No log 33.0 231 0.4567 0.825 0.3233 0.9246 0.825 0.7928 0.2665 0.0592
No log 34.0 238 0.4468 0.82 0.3152 1.0065 0.82 0.8000 0.2710 0.0563
No log 35.0 245 0.4562 0.78 0.3244 1.0626 0.78 0.7614 0.2602 0.0624
No log 36.0 252 0.4542 0.815 0.3223 1.1362 0.815 0.7852 0.2584 0.0579
No log 37.0 259 0.4441 0.82 0.3136 1.0419 0.82 0.7901 0.2790 0.0529
No log 38.0 266 0.4408 0.825 0.3125 0.9860 0.825 0.8023 0.2766 0.0553
No log 39.0 273 0.4354 0.83 0.3082 0.8958 0.83 0.8116 0.2713 0.0504
No log 40.0 280 0.4465 0.79 0.3164 1.1111 0.79 0.7715 0.2668 0.0628
No log 41.0 287 0.4416 0.845 0.3128 1.0103 0.845 0.8162 0.3044 0.0527
No log 42.0 294 0.4463 0.83 0.3165 1.0849 0.83 0.8106 0.2683 0.0580
No log 43.0 301 0.4405 0.845 0.3132 1.0312 0.845 0.8247 0.2792 0.0509
No log 44.0 308 0.4443 0.83 0.3174 0.9196 0.83 0.8094 0.2687 0.0524
No log 45.0 315 0.4445 0.82 0.3194 1.0665 0.82 0.7897 0.2651 0.0560
No log 46.0 322 0.4405 0.81 0.3133 1.1805 0.81 0.7770 0.2771 0.0550
No log 47.0 329 0.4380 0.84 0.3132 0.9508 0.8400 0.8104 0.2916 0.0535
No log 48.0 336 0.4407 0.825 0.3139 0.9044 0.825 0.7978 0.2702 0.0542
No log 49.0 343 0.4418 0.835 0.3154 0.8965 0.835 0.8178 0.2877 0.0569
No log 50.0 350 0.4368 0.825 0.3123 0.9774 0.825 0.8073 0.2607 0.0531
No log 51.0 357 0.4402 0.825 0.3140 0.9170 0.825 0.8052 0.2810 0.0550
No log 52.0 364 0.4374 0.82 0.3107 0.9873 0.82 0.7952 0.2602 0.0542
No log 53.0 371 0.4368 0.83 0.3120 0.9832 0.83 0.8084 0.2709 0.0541
No log 54.0 378 0.4375 0.82 0.3131 0.9094 0.82 0.7943 0.2633 0.0538
No log 55.0 385 0.4379 0.815 0.3134 0.9927 0.815 0.7856 0.2960 0.0552
No log 56.0 392 0.4370 0.83 0.3125 0.9746 0.83 0.8100 0.2744 0.0535
No log 57.0 399 0.4366 0.825 0.3123 1.0392 0.825 0.8021 0.2730 0.0536
No log 58.0 406 0.4372 0.825 0.3129 0.9174 0.825 0.8026 0.2800 0.0542
No log 59.0 413 0.4380 0.81 0.3134 0.9770 0.81 0.7831 0.2612 0.0557
No log 60.0 420 0.4374 0.82 0.3130 0.9124 0.82 0.7961 0.2589 0.0541
No log 61.0 427 0.4366 0.825 0.3121 0.9038 0.825 0.8061 0.2641 0.0538
No log 62.0 434 0.4372 0.825 0.3126 0.9105 0.825 0.8042 0.2684 0.0547
No log 63.0 441 0.4381 0.82 0.3135 0.9160 0.82 0.7961 0.2810 0.0545
No log 64.0 448 0.4376 0.83 0.3133 0.9134 0.83 0.8100 0.2757 0.0539
No log 65.0 455 0.4376 0.825 0.3130 0.9133 0.825 0.8061 0.2977 0.0541
No log 66.0 462 0.4378 0.825 0.3133 0.9153 0.825 0.8061 0.2767 0.0543
No log 67.0 469 0.4373 0.825 0.3129 0.9139 0.825 0.8042 0.2905 0.0541
No log 68.0 476 0.4375 0.82 0.3129 0.9128 0.82 0.7961 0.2739 0.0543
No log 69.0 483 0.4376 0.82 0.3131 0.9125 0.82 0.7961 0.2757 0.0542
No log 70.0 490 0.4377 0.825 0.3133 0.9174 0.825 0.8061 0.2924 0.0538
No log 71.0 497 0.4380 0.82 0.3134 0.9179 0.82 0.7961 0.2896 0.0541
0.2684 72.0 504 0.4378 0.82 0.3133 0.9148 0.82 0.8035 0.2912 0.0543
0.2684 73.0 511 0.4375 0.82 0.3131 0.9169 0.82 0.7961 0.2731 0.0542
0.2684 74.0 518 0.4379 0.82 0.3133 0.9177 0.82 0.7961 0.2732 0.0540
0.2684 75.0 525 0.4383 0.82 0.3138 0.9194 0.82 0.8035 0.2835 0.0545
0.2684 76.0 532 0.4378 0.815 0.3133 0.9133 0.815 0.7935 0.2824 0.0543
0.2684 77.0 539 0.4378 0.815 0.3133 0.9146 0.815 0.7935 0.2735 0.0542
0.2684 78.0 546 0.4379 0.815 0.3134 0.9139 0.815 0.7935 0.2828 0.0547
0.2684 79.0 553 0.4382 0.815 0.3136 0.9179 0.815 0.7935 0.2817 0.0547
0.2684 80.0 560 0.4380 0.815 0.3134 0.9168 0.815 0.7935 0.2818 0.0545
0.2684 81.0 567 0.4381 0.815 0.3135 0.9183 0.815 0.7935 0.2736 0.0544
0.2684 82.0 574 0.4379 0.815 0.3134 0.9164 0.815 0.7935 0.2736 0.0544
0.2684 83.0 581 0.4382 0.815 0.3136 0.9168 0.815 0.7935 0.2736 0.0541
0.2684 84.0 588 0.4381 0.815 0.3136 0.9199 0.815 0.7935 0.2737 0.0541
0.2684 85.0 595 0.4380 0.815 0.3134 0.9175 0.815 0.7935 0.2735 0.0543
0.2684 86.0 602 0.4383 0.815 0.3137 0.9197 0.815 0.7935 0.2674 0.0545
0.2684 87.0 609 0.4381 0.815 0.3135 0.9176 0.815 0.7935 0.2738 0.0547
0.2684 88.0 616 0.4381 0.815 0.3135 0.9179 0.815 0.7935 0.2736 0.0541
0.2684 89.0 623 0.4381 0.815 0.3135 0.9177 0.815 0.7935 0.2737 0.0543
0.2684 90.0 630 0.4382 0.815 0.3136 0.9173 0.815 0.7935 0.2736 0.0544
0.2684 91.0 637 0.4383 0.815 0.3136 0.9187 0.815 0.7935 0.2738 0.0546
0.2684 92.0 644 0.4382 0.815 0.3136 0.9171 0.815 0.7935 0.2738 0.0544
0.2684 93.0 651 0.4383 0.815 0.3137 0.9190 0.815 0.7935 0.2738 0.0546
0.2684 94.0 658 0.4382 0.815 0.3136 0.9187 0.815 0.7935 0.2737 0.0543
0.2684 95.0 665 0.4383 0.815 0.3136 0.9184 0.815 0.7935 0.2739 0.0545
0.2684 96.0 672 0.4382 0.815 0.3136 0.9184 0.815 0.7935 0.2737 0.0545
0.2684 97.0 679 0.4382 0.815 0.3136 0.9179 0.815 0.7935 0.2739 0.0545
0.2684 98.0 686 0.4383 0.815 0.3137 0.9185 0.815 0.7935 0.2738 0.0544
0.2684 99.0 693 0.4383 0.815 0.3137 0.9182 0.815 0.7935 0.2739 0.0546
0.2684 100.0 700 0.4383 0.815 0.3137 0.9180 0.815 0.7935 0.2739 0.0546

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.