81-tiny_tobacco3482_kd_CEKD_t2.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4383
- Accuracy: 0.815
- Brier Loss: 0.3137
- Nll: 0.9180
- F1 Micro: 0.815
- F1 Macro: 0.7935
- Ece: 0.2739
- Aurc: 0.0546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 2.1414 | 0.1 | 1.0055 | 8.0967 | 0.1000 | 0.0761 | 0.3253 | 0.8939 |
No log | 2.0 | 14 | 1.4539 | 0.215 | 0.8614 | 5.0189 | 0.2150 | 0.1812 | 0.2795 | 0.7550 |
No log | 3.0 | 21 | 1.1486 | 0.39 | 0.7467 | 4.3499 | 0.39 | 0.3077 | 0.2755 | 0.4066 |
No log | 4.0 | 28 | 0.9182 | 0.575 | 0.5990 | 2.9424 | 0.575 | 0.4619 | 0.2988 | 0.2367 |
No log | 5.0 | 35 | 0.8134 | 0.645 | 0.5398 | 2.1261 | 0.645 | 0.5549 | 0.2689 | 0.1878 |
No log | 6.0 | 42 | 0.7149 | 0.7 | 0.4612 | 2.2189 | 0.7 | 0.6006 | 0.2518 | 0.1316 |
No log | 7.0 | 49 | 0.6607 | 0.73 | 0.4303 | 1.7076 | 0.7300 | 0.6689 | 0.2976 | 0.1200 |
No log | 8.0 | 56 | 0.6109 | 0.755 | 0.3922 | 1.7703 | 0.755 | 0.6743 | 0.2638 | 0.0861 |
No log | 9.0 | 63 | 0.6119 | 0.715 | 0.3943 | 1.4194 | 0.715 | 0.6534 | 0.2276 | 0.0840 |
No log | 10.0 | 70 | 0.5462 | 0.8 | 0.3535 | 1.4026 | 0.8000 | 0.7760 | 0.2888 | 0.0660 |
No log | 11.0 | 77 | 0.5376 | 0.785 | 0.3481 | 1.2329 | 0.785 | 0.7600 | 0.2660 | 0.0757 |
No log | 12.0 | 84 | 0.5250 | 0.785 | 0.3442 | 1.1226 | 0.785 | 0.7669 | 0.2476 | 0.0802 |
No log | 13.0 | 91 | 0.5053 | 0.81 | 0.3313 | 1.1038 | 0.81 | 0.7824 | 0.2543 | 0.0628 |
No log | 14.0 | 98 | 0.5188 | 0.79 | 0.3497 | 1.0872 | 0.79 | 0.7678 | 0.2495 | 0.0759 |
No log | 15.0 | 105 | 0.5020 | 0.805 | 0.3412 | 1.4342 | 0.805 | 0.7868 | 0.2669 | 0.0652 |
No log | 16.0 | 112 | 0.5221 | 0.795 | 0.3496 | 1.3609 | 0.795 | 0.7473 | 0.2682 | 0.0621 |
No log | 17.0 | 119 | 0.5046 | 0.8 | 0.3372 | 1.1543 | 0.8000 | 0.7766 | 0.2604 | 0.0689 |
No log | 18.0 | 126 | 0.4733 | 0.805 | 0.3248 | 1.1335 | 0.805 | 0.7800 | 0.2599 | 0.0582 |
No log | 19.0 | 133 | 0.4725 | 0.815 | 0.3242 | 1.1607 | 0.815 | 0.7855 | 0.2733 | 0.0573 |
No log | 20.0 | 140 | 0.4887 | 0.82 | 0.3325 | 1.0316 | 0.82 | 0.7998 | 0.2684 | 0.0568 |
No log | 21.0 | 147 | 0.4708 | 0.815 | 0.3205 | 1.1275 | 0.815 | 0.8033 | 0.2412 | 0.0663 |
No log | 22.0 | 154 | 0.4773 | 0.83 | 0.3309 | 1.1147 | 0.83 | 0.8101 | 0.2739 | 0.0518 |
No log | 23.0 | 161 | 0.4957 | 0.815 | 0.3402 | 1.0884 | 0.815 | 0.8012 | 0.2582 | 0.0726 |
No log | 24.0 | 168 | 0.4666 | 0.805 | 0.3305 | 1.0784 | 0.805 | 0.7858 | 0.2792 | 0.0560 |
No log | 25.0 | 175 | 0.4830 | 0.795 | 0.3324 | 1.1757 | 0.795 | 0.7595 | 0.2505 | 0.0715 |
No log | 26.0 | 182 | 0.4622 | 0.8 | 0.3272 | 1.0698 | 0.8000 | 0.7873 | 0.2795 | 0.0590 |
No log | 27.0 | 189 | 0.4604 | 0.8 | 0.3200 | 1.1104 | 0.8000 | 0.7717 | 0.2561 | 0.0630 |
No log | 28.0 | 196 | 0.4635 | 0.82 | 0.3253 | 1.1271 | 0.82 | 0.7903 | 0.2756 | 0.0571 |
No log | 29.0 | 203 | 0.4590 | 0.815 | 0.3211 | 1.1048 | 0.815 | 0.7952 | 0.2881 | 0.0567 |
No log | 30.0 | 210 | 0.4575 | 0.795 | 0.3210 | 0.9174 | 0.795 | 0.7786 | 0.2833 | 0.0625 |
No log | 31.0 | 217 | 0.4684 | 0.83 | 0.3337 | 0.9485 | 0.83 | 0.8093 | 0.2892 | 0.0557 |
No log | 32.0 | 224 | 0.4520 | 0.81 | 0.3208 | 1.0186 | 0.81 | 0.7955 | 0.2438 | 0.0577 |
No log | 33.0 | 231 | 0.4567 | 0.825 | 0.3233 | 0.9246 | 0.825 | 0.7928 | 0.2665 | 0.0592 |
No log | 34.0 | 238 | 0.4468 | 0.82 | 0.3152 | 1.0065 | 0.82 | 0.8000 | 0.2710 | 0.0563 |
No log | 35.0 | 245 | 0.4562 | 0.78 | 0.3244 | 1.0626 | 0.78 | 0.7614 | 0.2602 | 0.0624 |
No log | 36.0 | 252 | 0.4542 | 0.815 | 0.3223 | 1.1362 | 0.815 | 0.7852 | 0.2584 | 0.0579 |
No log | 37.0 | 259 | 0.4441 | 0.82 | 0.3136 | 1.0419 | 0.82 | 0.7901 | 0.2790 | 0.0529 |
No log | 38.0 | 266 | 0.4408 | 0.825 | 0.3125 | 0.9860 | 0.825 | 0.8023 | 0.2766 | 0.0553 |
No log | 39.0 | 273 | 0.4354 | 0.83 | 0.3082 | 0.8958 | 0.83 | 0.8116 | 0.2713 | 0.0504 |
No log | 40.0 | 280 | 0.4465 | 0.79 | 0.3164 | 1.1111 | 0.79 | 0.7715 | 0.2668 | 0.0628 |
No log | 41.0 | 287 | 0.4416 | 0.845 | 0.3128 | 1.0103 | 0.845 | 0.8162 | 0.3044 | 0.0527 |
No log | 42.0 | 294 | 0.4463 | 0.83 | 0.3165 | 1.0849 | 0.83 | 0.8106 | 0.2683 | 0.0580 |
No log | 43.0 | 301 | 0.4405 | 0.845 | 0.3132 | 1.0312 | 0.845 | 0.8247 | 0.2792 | 0.0509 |
No log | 44.0 | 308 | 0.4443 | 0.83 | 0.3174 | 0.9196 | 0.83 | 0.8094 | 0.2687 | 0.0524 |
No log | 45.0 | 315 | 0.4445 | 0.82 | 0.3194 | 1.0665 | 0.82 | 0.7897 | 0.2651 | 0.0560 |
No log | 46.0 | 322 | 0.4405 | 0.81 | 0.3133 | 1.1805 | 0.81 | 0.7770 | 0.2771 | 0.0550 |
No log | 47.0 | 329 | 0.4380 | 0.84 | 0.3132 | 0.9508 | 0.8400 | 0.8104 | 0.2916 | 0.0535 |
No log | 48.0 | 336 | 0.4407 | 0.825 | 0.3139 | 0.9044 | 0.825 | 0.7978 | 0.2702 | 0.0542 |
No log | 49.0 | 343 | 0.4418 | 0.835 | 0.3154 | 0.8965 | 0.835 | 0.8178 | 0.2877 | 0.0569 |
No log | 50.0 | 350 | 0.4368 | 0.825 | 0.3123 | 0.9774 | 0.825 | 0.8073 | 0.2607 | 0.0531 |
No log | 51.0 | 357 | 0.4402 | 0.825 | 0.3140 | 0.9170 | 0.825 | 0.8052 | 0.2810 | 0.0550 |
No log | 52.0 | 364 | 0.4374 | 0.82 | 0.3107 | 0.9873 | 0.82 | 0.7952 | 0.2602 | 0.0542 |
No log | 53.0 | 371 | 0.4368 | 0.83 | 0.3120 | 0.9832 | 0.83 | 0.8084 | 0.2709 | 0.0541 |
No log | 54.0 | 378 | 0.4375 | 0.82 | 0.3131 | 0.9094 | 0.82 | 0.7943 | 0.2633 | 0.0538 |
No log | 55.0 | 385 | 0.4379 | 0.815 | 0.3134 | 0.9927 | 0.815 | 0.7856 | 0.2960 | 0.0552 |
No log | 56.0 | 392 | 0.4370 | 0.83 | 0.3125 | 0.9746 | 0.83 | 0.8100 | 0.2744 | 0.0535 |
No log | 57.0 | 399 | 0.4366 | 0.825 | 0.3123 | 1.0392 | 0.825 | 0.8021 | 0.2730 | 0.0536 |
No log | 58.0 | 406 | 0.4372 | 0.825 | 0.3129 | 0.9174 | 0.825 | 0.8026 | 0.2800 | 0.0542 |
No log | 59.0 | 413 | 0.4380 | 0.81 | 0.3134 | 0.9770 | 0.81 | 0.7831 | 0.2612 | 0.0557 |
No log | 60.0 | 420 | 0.4374 | 0.82 | 0.3130 | 0.9124 | 0.82 | 0.7961 | 0.2589 | 0.0541 |
No log | 61.0 | 427 | 0.4366 | 0.825 | 0.3121 | 0.9038 | 0.825 | 0.8061 | 0.2641 | 0.0538 |
No log | 62.0 | 434 | 0.4372 | 0.825 | 0.3126 | 0.9105 | 0.825 | 0.8042 | 0.2684 | 0.0547 |
No log | 63.0 | 441 | 0.4381 | 0.82 | 0.3135 | 0.9160 | 0.82 | 0.7961 | 0.2810 | 0.0545 |
No log | 64.0 | 448 | 0.4376 | 0.83 | 0.3133 | 0.9134 | 0.83 | 0.8100 | 0.2757 | 0.0539 |
No log | 65.0 | 455 | 0.4376 | 0.825 | 0.3130 | 0.9133 | 0.825 | 0.8061 | 0.2977 | 0.0541 |
No log | 66.0 | 462 | 0.4378 | 0.825 | 0.3133 | 0.9153 | 0.825 | 0.8061 | 0.2767 | 0.0543 |
No log | 67.0 | 469 | 0.4373 | 0.825 | 0.3129 | 0.9139 | 0.825 | 0.8042 | 0.2905 | 0.0541 |
No log | 68.0 | 476 | 0.4375 | 0.82 | 0.3129 | 0.9128 | 0.82 | 0.7961 | 0.2739 | 0.0543 |
No log | 69.0 | 483 | 0.4376 | 0.82 | 0.3131 | 0.9125 | 0.82 | 0.7961 | 0.2757 | 0.0542 |
No log | 70.0 | 490 | 0.4377 | 0.825 | 0.3133 | 0.9174 | 0.825 | 0.8061 | 0.2924 | 0.0538 |
No log | 71.0 | 497 | 0.4380 | 0.82 | 0.3134 | 0.9179 | 0.82 | 0.7961 | 0.2896 | 0.0541 |
0.2684 | 72.0 | 504 | 0.4378 | 0.82 | 0.3133 | 0.9148 | 0.82 | 0.8035 | 0.2912 | 0.0543 |
0.2684 | 73.0 | 511 | 0.4375 | 0.82 | 0.3131 | 0.9169 | 0.82 | 0.7961 | 0.2731 | 0.0542 |
0.2684 | 74.0 | 518 | 0.4379 | 0.82 | 0.3133 | 0.9177 | 0.82 | 0.7961 | 0.2732 | 0.0540 |
0.2684 | 75.0 | 525 | 0.4383 | 0.82 | 0.3138 | 0.9194 | 0.82 | 0.8035 | 0.2835 | 0.0545 |
0.2684 | 76.0 | 532 | 0.4378 | 0.815 | 0.3133 | 0.9133 | 0.815 | 0.7935 | 0.2824 | 0.0543 |
0.2684 | 77.0 | 539 | 0.4378 | 0.815 | 0.3133 | 0.9146 | 0.815 | 0.7935 | 0.2735 | 0.0542 |
0.2684 | 78.0 | 546 | 0.4379 | 0.815 | 0.3134 | 0.9139 | 0.815 | 0.7935 | 0.2828 | 0.0547 |
0.2684 | 79.0 | 553 | 0.4382 | 0.815 | 0.3136 | 0.9179 | 0.815 | 0.7935 | 0.2817 | 0.0547 |
0.2684 | 80.0 | 560 | 0.4380 | 0.815 | 0.3134 | 0.9168 | 0.815 | 0.7935 | 0.2818 | 0.0545 |
0.2684 | 81.0 | 567 | 0.4381 | 0.815 | 0.3135 | 0.9183 | 0.815 | 0.7935 | 0.2736 | 0.0544 |
0.2684 | 82.0 | 574 | 0.4379 | 0.815 | 0.3134 | 0.9164 | 0.815 | 0.7935 | 0.2736 | 0.0544 |
0.2684 | 83.0 | 581 | 0.4382 | 0.815 | 0.3136 | 0.9168 | 0.815 | 0.7935 | 0.2736 | 0.0541 |
0.2684 | 84.0 | 588 | 0.4381 | 0.815 | 0.3136 | 0.9199 | 0.815 | 0.7935 | 0.2737 | 0.0541 |
0.2684 | 85.0 | 595 | 0.4380 | 0.815 | 0.3134 | 0.9175 | 0.815 | 0.7935 | 0.2735 | 0.0543 |
0.2684 | 86.0 | 602 | 0.4383 | 0.815 | 0.3137 | 0.9197 | 0.815 | 0.7935 | 0.2674 | 0.0545 |
0.2684 | 87.0 | 609 | 0.4381 | 0.815 | 0.3135 | 0.9176 | 0.815 | 0.7935 | 0.2738 | 0.0547 |
0.2684 | 88.0 | 616 | 0.4381 | 0.815 | 0.3135 | 0.9179 | 0.815 | 0.7935 | 0.2736 | 0.0541 |
0.2684 | 89.0 | 623 | 0.4381 | 0.815 | 0.3135 | 0.9177 | 0.815 | 0.7935 | 0.2737 | 0.0543 |
0.2684 | 90.0 | 630 | 0.4382 | 0.815 | 0.3136 | 0.9173 | 0.815 | 0.7935 | 0.2736 | 0.0544 |
0.2684 | 91.0 | 637 | 0.4383 | 0.815 | 0.3136 | 0.9187 | 0.815 | 0.7935 | 0.2738 | 0.0546 |
0.2684 | 92.0 | 644 | 0.4382 | 0.815 | 0.3136 | 0.9171 | 0.815 | 0.7935 | 0.2738 | 0.0544 |
0.2684 | 93.0 | 651 | 0.4383 | 0.815 | 0.3137 | 0.9190 | 0.815 | 0.7935 | 0.2738 | 0.0546 |
0.2684 | 94.0 | 658 | 0.4382 | 0.815 | 0.3136 | 0.9187 | 0.815 | 0.7935 | 0.2737 | 0.0543 |
0.2684 | 95.0 | 665 | 0.4383 | 0.815 | 0.3136 | 0.9184 | 0.815 | 0.7935 | 0.2739 | 0.0545 |
0.2684 | 96.0 | 672 | 0.4382 | 0.815 | 0.3136 | 0.9184 | 0.815 | 0.7935 | 0.2737 | 0.0545 |
0.2684 | 97.0 | 679 | 0.4382 | 0.815 | 0.3136 | 0.9179 | 0.815 | 0.7935 | 0.2739 | 0.0545 |
0.2684 | 98.0 | 686 | 0.4383 | 0.815 | 0.3137 | 0.9185 | 0.815 | 0.7935 | 0.2738 | 0.0544 |
0.2684 | 99.0 | 693 | 0.4383 | 0.815 | 0.3137 | 0.9182 | 0.815 | 0.7935 | 0.2739 | 0.0546 |
0.2684 | 100.0 | 700 | 0.4383 | 0.815 | 0.3137 | 0.9180 | 0.815 | 0.7935 | 0.2739 | 0.0546 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.