You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.12.2

# In case of weird errors, try reinstalling
# pip install --no-build-isolation axolotl[deepspeed]
# (unsloth libraries are incompatible)
base_model: Qwen/Qwen3-14B

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Sunbird/ug40-instructions
    name: pretraining_text_qwen
    split: train
    text_column: text
    type: completion

test_datasets:
  - path: Sunbird/ug40-instructions
    name:  pretraining_text_qwen
    split: dev
    text_column: text
    type: completion
      
sequence_len: 512
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

gradient_accumulation_steps: 8 # Remember to check number of GPUs on the instance
micro_batch_size: 4 # 4 on 4xH100, 16 on 8xH100
num_epochs: 2
optimizer: adamw_torch_fused
learning_rate: 2e-5
lr_scheduler: cosine
weight_decay: 0.01
max_grad_norm: 1.0

train_on_inputs: 
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
xformers_attention:
flash_attention: true
eager_attention: 

# plugins:
#   - axolotl.integrations.liger.LigerPlugin

# liger_rope: true
# liger_rms_norm: true
# liger_glu_activation: true
# liger_layer_norm: true
# liger_fused_linear_cross_entropy: true

loss_watchdog_threshold: 10.0
loss_watchdog_patience: 3

warmup_steps: 20
eval_steps: 200
#save_steps: 5000 
logging_steps: 5
save_strategy: epoch
save_only_model: true
hub_model_id: sunflower-qwen14b-pretrained
hub_strategy: end

#save_total_limit: 2
# auto_resume_from_checkpoints: true
debug:

deepspeed: zero3_bf16.json

# fsdp:
#   - full_shard
#   - auto_wrap

# fsdp_config:
#   fsdp_version: 2
#   fsdp_offload_params: false
#   fsdp_cpu_ram_efficient_loading: true
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
#   fsdp_state_dict_type: FULL_STATE_DICT
#   fsdp_sharding_strategy: FULL_SHARD
#   fsdp_reshard_after_forward: true
#   fsdp_activation_checkpointing: true
  
dataset_prepared_path: last_run_prepared
output_dir: ./outputs-14b/

use_wandb: true
use_mlflow: true
wandb_project: ug40-pretraining
# wandb_name also sets mlflow run name
wandb_name: qwen3-14b-updated-dataset
mlflow_tracking_uri: https://mlflow.sunbird.ai
mlflow_experiment_name: ug40-pretraining
# mlflow_run_name: qwen3-14b-convergence-test-lr5e-5




sunflower-qwen14b-pretrained

This model is a fine-tuned version of Qwen/Qwen3-14B on the Sunbird/ug40-instructions dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4671
  • Memory/max Mem Active(gib): 86.43
  • Memory/max Mem Allocated(gib): 83.31
  • Memory/device Mem Reserved(gib): 89.31

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 6566

Training results

Training Loss Epoch Step Validation Loss Mem Active(gib) Mem Allocated(gib) Mem Reserved(gib)
No log 0 0 5.0475 32.9 31.23 33.76
1.9221 0.0609 200 3.9620 86.26 83.31 89.25
1.7596 0.1218 400 3.7963 86.26 83.31 89.25
1.6725 0.1827 600 3.7146 86.26 83.31 89.25
1.5979 0.2436 800 3.6525 86.26 83.31 89.31
1.5777 0.3045 1000 3.6217 86.43 83.31 89.31
1.5402 0.3654 1200 3.5778 86.43 83.31 89.31
1.4566 0.4263 1400 3.5412 86.43 83.31 89.31
1.4802 0.4872 1600 3.5108 86.43 83.31 89.31
1.4387 0.5482 1800 3.4920 86.43 83.31 89.31
1.4597 0.6091 2000 3.4641 86.43 83.31 89.31
1.4184 0.6700 2200 3.4305 86.43 83.31 89.31
1.3884 0.7309 2400 3.4378 86.43 83.31 89.31
1.3969 0.7918 2600 3.4255 86.43 83.31 89.31
1.386 0.8527 2800 3.4179 86.43 83.31 89.31
1.3878 0.9136 3000 3.4013 86.43 83.31 89.31
1.3527 0.9745 3200 3.3740 86.43 83.31 89.31
1.235 1.0353 3400 3.3815 86.43 83.31 89.31
1.2022 1.0962 3600 3.3864 86.43 83.31 89.31
1.2686 1.1571 3800 3.3910 86.43 83.31 89.31
1.1872 1.2180 4000 3.4042 86.43 83.31 89.31
1.1492 1.2789 4200 3.4116 86.43 83.31 89.31
1.1509 1.3399 4400 3.4143 86.43 83.31 89.31
1.1203 1.4008 4600 3.4283 86.43 83.31 89.31
1.1141 1.4617 4800 3.4334 86.43 83.31 89.31
1.0503 1.5226 5000 3.4457 86.43 83.31 89.31
1.0882 1.5835 5200 3.4416 86.43 83.31 89.31
1.0906 1.6444 5400 3.4468 86.43 83.31 89.31
1.1084 1.7053 5600 3.4555 86.43 83.31 89.31
1.0827 1.7662 5800 3.4560 86.43 83.31 89.31
1.0913 1.8271 6000 3.4650 86.43 83.31 89.31
1.0717 1.8880 6200 3.4688 86.43 83.31 89.31
1.0629 1.9489 6400 3.4671 86.43 83.31 89.31

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.7.1+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
48
Safetensors
Model size
425k params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jq/sunflower-qwen14b-pretrained

Finetuned
Qwen/Qwen3-14B
Finetuned
(143)
this model
Finetunes
1 model