judithrosell's picture
End of training
6cadbb9 verified
metadata
library_name: transformers
license: mit
base_model: m3rg-iitd/matscibert
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Final_Biomaterials_ST_single_dataset
    results: []

Final_Biomaterials_ST_single_dataset

This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1312
  • Precision: 0.6382
  • Recall: 0.6581
  • F1: 0.6480
  • Accuracy: 0.9631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0925 1.0 3272 0.0913 0.6363 0.6521 0.6441 0.9624
0.0707 2.0 6544 0.0937 0.6491 0.6611 0.6550 0.9637
0.0607 3.0 9816 0.1028 0.6480 0.6591 0.6535 0.9626
0.0522 4.0 13088 0.1076 0.6175 0.6910 0.6522 0.9610
0.0485 5.0 16360 0.1087 0.6732 0.6208 0.6459 0.9640
0.0472 6.0 19632 0.1140 0.6431 0.6334 0.6382 0.9622
0.0454 7.0 22904 0.1232 0.6113 0.7110 0.6574 0.9609
0.0431 8.0 26176 0.1285 0.6750 0.6237 0.6484 0.9636
0.0427 9.0 29448 0.1301 0.6273 0.6609 0.6437 0.9610
0.0409 10.0 32720 0.1312 0.6382 0.6581 0.6480 0.9631

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1