This model is a fine-tuned version of occiglot/occiglot-7b-eu5-instruct for generating SPARQL queries from English natural language questions, specifically targeting the Wikidata knowledge graph.

Model Details

Model Description

It was fine-tuned using QLoRA. It takes an English natural language question as input and aims to produce a corresponding SPARQL query that can be executed against the Wikidata knowledge graph. It is part of a series of experiments to investigate the impact of continual multilingual pre-training on cross-lingual transferability and task-specific performance. Uses 4-bit quantization.

  • Developed by: Julio Cesar Perez Duran
  • Funded by : DFKI
  • Model type: Decoder-only Transformer-based language model
  • Language(s) (NLP): en (English)
  • License: mit
  • Finetuned from model [optional]: occiglot/occiglot-7b-eu5-instruct

Uses

Bias, Risks, and Limitations

  • Entity/Relationship Linking Bottleneck: A primary limitation of this model is a significant deficiency in accurately mapping textual entities and relationships to their correct Wikidata identifiers (QIDs and PIDs). While the model might generate structurally valid SPARQL, the entities or properties could be incorrect (e.g., mapping "Bill Gates" to Microsoft's QID instead of Bill Gates'). This significantly impacted recall.

How to Get Started with the Model

The following Python script provides an example of how to load the model and tokenizer using the Hugging Face Transformers and PEFT libraries to generate a SPARQL query.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import re

model_id = "julioc-p/occiglot-7b-eu5-instruct-txt-sparql-4bit" #
base_model_for_tokenizer = "occiglot/occiglot-7b-eu5-instruct" #

# Configuration for 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, #
    bnb_4bit_quant_type="nf4", 
    bnb_4bit_compute_dtype=torch.bfloat16, 
    bnb_4bit_use_double_quant=False, 
)

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto" # Automatically uses GPU if available
)
tokenizer = AutoTokenizer.from_pretrained(base_model_for_tokenizer)
tokenizer.pad_token = tokenizer.eos_token


def extract_sparql(text): #
    match = re.search(
        r"(SELECT|ASK|CONSTRUCT|DESCRIBE).*?\}", text, re.DOTALL | re.IGNORECASE #
    )
    if match:
        return match.group(0).strip() #
    return ""


# --- Example usage ---
question = "What is the boiling point of water?"
knowledge_graph_target = "Wikidata"

system_prompt_content = "You are an expert in SPARQL query generation. Generate the SPARQL query that answers the user's question."


chat_template = [
    {"role": "system", "content": system_prompt_content},
    {"role": "user", "content": question},
]

inputs = tokenizer.apply_chat_template(
    chat_template,
    tokenize=True,
    add_generation_prompt=True, # This adds the assistant's turn start
    return_tensors="pt"
).to(model.device)

# Generate the output
with torch.no_grad():
    outputs = model.generate(inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id)

# Decode and extract the SPARQL query
# Decode only the generated part (assistant's response)
generated_text_assistant_part = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True)

cleaned_sparql = extract_sparql(generated_text_assistant_part)

print(f"Question: {question}")
print(f"Generated SPARQL: {cleaned_sparql}")
print(f"Raw generated text (assistant part): {generated_text_assistant_part}")

Training Data

The model was fine-tuned on a subset of the julioc-p/Question-Sparql dataset. Specifically, a 35,000-sample English subset filtered to include only Wikidata-related queries was used.

Training Hyperparameters

The following hyperparameters were used for the v1.1 Occiglot English fine-tuning:

  • Base Model: occiglot/occiglot-7b-eu5-instruct
  • LoRA Configuration (for Occiglot v1.1):
    • r (LoRA rank): 64
    • lora_alpha: 16
    • lora_dropout: 0.1
    • bias: "none"
    • task_type: "CAUSAL_LM"
    • target_modules: "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"
  • Training Arguments:
    • num_train_epochs: 5
    • per_device_train_batch_size: 1
    • gradient_accumulation_steps: 8 (Effective batch size of 8)
    • gradient_checkpointing: True
    • optim: "paged_adamw_32bit"
    • learning_rate: 1e-5
    • weight_decay: 0.05
    • bf16: False (NVIDIA V100 does not support bfloat16)
    • fp16: True
    • max_grad_norm: 1.0
    • warmup_ratio: 0.01
    • lr_scheduler_type: "cosine"
    • group_by_length: True
    • packing: False (for v1 models)
  • BitsAndBytesConfig:
    • load_in_4bit: True
    • bnb_4bit_quant_type: "nf4"
    • bnb_4bit_compute_dtype: torch.float16
    • bnb_4bit_use_double_quant: False

Speeds, Sizes, Times [optional]

  • The training took approximately 19-20 hours for 5 epochs on a single NVIDIA V100 GPU.

Evaluation

Testing Data, Factors & Metrics

Testing Data

  1. QALD-10 test set:
  2. v1 Test Set (English): 3,500 English held out examples randomly sampled from the julioc-p/Question-Sparql dataset. -7b-eu5-instruct fine-tuned with QLoRA (v1.1).

Metrics

The primary evaluation metrics used were the QALD standard macro-averaged F1-score, Precision, and Recall. Non-executable queries resulted in P, R, F1 = 0. The percentage of Executable Queries was also tracked. Correctness was further broken down into "Correct (Exact Match)" and "Correct (Both Empty)".

Results

On QALD-10 (English, N=391):

  • Macro F1-Score: 0.0439
  • Macro Precision: 0.7698
  • Macro Recall: 0.0437
  • Executable Queries: 95.40% (373/391)
  • Correctness (Exact Match + Both Empty): 4.35% (17/391)
    • Correct (Exact Match): 3.07% (12/391)
    • Correct (Both Empty): 1.28% (5/391)

v1 Test Set (English, N=3500):

  • Macro F1-Score: 0.2998
  • Macro Precision: 0.9884
  • Macro Recall: 0.3013
  • Executable Queries: 99.57% (3485/3500)
  • Correctness (Exact Match + Both Empty): 29.80% (1043/3500)
    • Correct (Exact Match): 20.83% (729/3500)
    • Correct (Both Empty): 8.97% (314/3500)

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: 1 x NVIDIA V100 32GB GPU
  • Hours used: Approx. 19-20 hours for the v1.1 English model fine-tuning.
  • Cloud Provider: DFKI HPC Cluster
  • Compute Region: Germany
  • Carbon Emitted: Approx. 2.96 kg CO2eq.

Technical Specifications [optional]

Compute Infrastructure

Hardware

  • NVIDIA V100 GPU (32 GB RAM)
  • 60 GB system RAM

Software

  • Slurm, NVIDIA Enroot, CUDA 11.8.0
  • Python, Hugging Face transformers, peft (0.13.2), bitsandbytes, trl, PyTorch.

More Information [optional]

Framework versions

  • PEFT 0.13.2
  • Transformers (4.39.3)
  • BitsAndBytes (0.43.0)
  • trl (0.8.6)
  • PyTorch (torch==2.1.0)
Downloads last month
36
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for julioc-p/occiglot-7b-eu5-instruct-txt-sparql-en-Instruct-txt-sparql_4bit

Adapter
(3)
this model

Dataset used to train julioc-p/occiglot-7b-eu5-instruct-txt-sparql-en-Instruct-txt-sparql_4bit