Upload finetune_speech.py
Browse files- examples/finetune_speech.py +0 -89
examples/finetune_speech.py
CHANGED
@@ -25,36 +25,6 @@ import soundfile as sf
|
|
25 |
from datasets import Audio
|
26 |
import random
|
27 |
|
28 |
-
class MultipleTokenBatchStoppingCriteria(StoppingCriteria):
|
29 |
-
"""Stopping criteria capable of receiving multiple stop-tokens and handling batched inputs."""
|
30 |
-
|
31 |
-
def __init__(self, stop_tokens: torch.LongTensor, batch_size: int = 1) -> None:
|
32 |
-
"""Initialize the multiple token batch stopping criteria.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
stop_tokens: Stop-tokens.
|
36 |
-
batch_size: Batch size.
|
37 |
-
|
38 |
-
"""
|
39 |
-
|
40 |
-
self.stop_tokens = stop_tokens
|
41 |
-
self.max_stop_tokens = stop_tokens.shape[-1]
|
42 |
-
self.stop_tokens_idx = torch.zeros(batch_size, dtype=torch.long, device=stop_tokens.device)
|
43 |
-
|
44 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
45 |
-
# Only gather the maximum number of inputs compatible with stop tokens
|
46 |
-
# and checks whether generated inputs are equal to `stop_tokens`
|
47 |
-
generated_inputs = torch.eq(input_ids[:, -self.max_stop_tokens :].unsqueeze(1), self.stop_tokens)
|
48 |
-
equal_generated_inputs = torch.all(generated_inputs, dim=2)
|
49 |
-
|
50 |
-
# Mark the position where a stop token has been produced for each input in the batch,
|
51 |
-
# but only if the corresponding entry is not already set
|
52 |
-
sequence_idx = torch.any(equal_generated_inputs, dim=1)
|
53 |
-
sequence_set_mask = self.stop_tokens_idx == 0
|
54 |
-
self.stop_tokens_idx[sequence_idx & sequence_set_mask] = input_ids.shape[-1]
|
55 |
-
|
56 |
-
return torch.all(self.stop_tokens_idx)
|
57 |
-
|
58 |
class BaseAudioDataset(Dataset):
|
59 |
def __init__(self, processor, split, sampling_rate=16000, debug=False):
|
60 |
self.processor = processor
|
@@ -581,65 +551,6 @@ def create_model(model_name_or_path, revision="main", use_flash_attention = Fals
|
|
581 |
|
582 |
return model
|
583 |
|
584 |
-
@torch.no_grad()
|
585 |
-
def evaluate(model, processor, eval_dataset, save_path=None, disable_tqdm=False, eval_batch_size=1):
|
586 |
-
model.eval()
|
587 |
-
all_generated_texts = []
|
588 |
-
all_labels = []
|
589 |
-
|
590 |
-
eval_dataloader = torch.utils.data.DataLoader(
|
591 |
-
eval_dataset,
|
592 |
-
batch_size=eval_batch_size,
|
593 |
-
collate_fn=covost_collate_fn,
|
594 |
-
shuffle=False,
|
595 |
-
drop_last=False,
|
596 |
-
num_workers=8,
|
597 |
-
prefetch_factor=2,
|
598 |
-
pin_memory=True,
|
599 |
-
)
|
600 |
-
stop_tokens = [processor.tokenizer.eos_token]
|
601 |
-
stop_tokens_ids = processor.tokenizer(stop_tokens, add_special_tokens=False, padding="longest", return_tensors="pt")["input_ids"]
|
602 |
-
stop_tokens_ids = stop_tokens_ids.to('cuda')
|
603 |
-
|
604 |
-
for inputs in tqdm(
|
605 |
-
eval_dataloader, disable= disable_tqdm, desc='running eval'
|
606 |
-
):
|
607 |
-
stopping_criteria=StoppingCriteriaList([MultipleTokenBatchStoppingCriteria(stop_tokens_ids, batch_size=inputs.input_ids.size(0))])
|
608 |
-
inputs = inputs.to('cuda').to(model.dtype)
|
609 |
-
generated_ids = model.generate(
|
610 |
-
**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=64,
|
611 |
-
stopping_criteria=stopping_criteria,
|
612 |
-
)
|
613 |
-
|
614 |
-
stop_tokens_idx = stopping_criteria[0].stop_tokens_idx.reshape(inputs.input_ids.size(0), -1)[:, 0]
|
615 |
-
|
616 |
-
stop_tokens_idx = torch.where(
|
617 |
-
stop_tokens_idx > 0,
|
618 |
-
stop_tokens_idx - stop_tokens_ids.shape[-1],
|
619 |
-
generated_ids.shape[-1],
|
620 |
-
)
|
621 |
-
generated_text = [
|
622 |
-
processor.decode(_pred_ids[inputs["input_ids"].shape[1] : _stop_tokens_idx], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
623 |
-
for _pred_ids, _stop_tokens_idx in zip(generated_ids, stop_tokens_idx)
|
624 |
-
]
|
625 |
-
all_generated_texts.extend(generated_text)
|
626 |
-
labels = [processor.decode(_label_ids[_label_ids != 0]).removesuffix(ANSWER_SUFFIX) for _label_ids in inputs["labels"]]
|
627 |
-
all_labels.extend(labels)
|
628 |
-
|
629 |
-
assert len(all_generated_texts) == len(all_labels)
|
630 |
-
bleu = sacrebleu.corpus_bleu(all_generated_texts, [all_labels])
|
631 |
-
print(bleu)
|
632 |
-
if save_path:
|
633 |
-
with open(save_path, 'w') as f:
|
634 |
-
save_dict = {
|
635 |
-
'all_generated_texts': all_generated_texts,
|
636 |
-
'all_labels': all_labels,
|
637 |
-
'score': bleu.score,
|
638 |
-
}
|
639 |
-
json.dump(save_dict, f)
|
640 |
-
|
641 |
-
return bleu.score
|
642 |
-
|
643 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
644 |
|
645 |
INSTRUCTION = {
|
|
|
25 |
from datasets import Audio
|
26 |
import random
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
class BaseAudioDataset(Dataset):
|
29 |
def __init__(self, processor, split, sampling_rate=16000, debug=False):
|
30 |
self.processor = processor
|
|
|
551 |
|
552 |
return model
|
553 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
555 |
|
556 |
INSTRUCTION = {
|