Text Generation
Transformers
Safetensors
MLX
qwen3_moe
programming
code generation
code
codeqwen
Mixture of Experts
coding
coder
qwen2
chat
qwen
qwen-coder
mixture of experts
4 experts
2 active experts
40k context
qwen3
finetune
creative
all use cases
roleplay
Merge
mlx-my-repo
conversational
4-bit precision
justneedsomeavailableusername/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-mlx-4Bit
The Model justneedsomeavailableusername/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-mlx-4Bit was converted to MLX format from DavidAU/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2 using mlx-lm version 0.26.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("justneedsomeavailableusername/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 77