SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This sentence-transformers model is a multilingual student model supporting English, Spanish, and Portuguese. For the student, an efficient MiniLM architecture was adopted, prized for its balance of performance and compact size (similar to the architecture used in models like sentence-transformers/all-MiniLM-L6-v2). This student was then trained by distilling knowledge from the high-performance BAAI/bge-small-en-v1.5 English embedding model, which served as the teacher. The resulting model maps sentences & paragraphs to a 384-dimensional dense vector space, suitable for tasks such as semantic textual similarity, semantic search, paraphrase mining, text classification, and clustering.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The Social Security takes another 8.7 billion euros from the Backup Fund',
'La Seguridad Social saca otros 8.700 millones del Fondo de Reserva',
'Tiene unos 44.000 millones de barriles de reservas de petroleo, y 54 billones de pies cubicos de reservas de gas natural.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
stsb_multi_mt-pt
,stsb_multi_mt-en
andstsb_multi_mt-es
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | stsb_multi_mt-pt | stsb_multi_mt-en | stsb_multi_mt-es |
---|---|---|---|
pearson_cosine | 0.8087 | 0.836 | 0.8209 |
spearman_cosine | 0.8245 | 0.8542 | 0.8434 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 37,000,000 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 3 tokens
- mean: 21.97 tokens
- max: 103 tokens
- min: 3 tokens
- mean: 23.91 tokens
- max: 118 tokens
- size: 384 elements
- Samples:
english non_english label It also calls on the UN Secretary-General, to present by 15 April to the Security Council “options” for the deployment of an international police force.
Asimismo, solicita al Secretario General de las Naciones Unidas que presente al Consejo de Seguridad, antes del 15 de abril, algunas "propuestas" para el despliegue de fuerzas de policía internacional.
[-0.04722730070352554, -0.025426536798477173, 0.04836353287100792, -0.04443460330367088, 0.06477425247430801, ...]
The Viacom Services governed by this privacy policy are generally not intended for use by children.
Los Servicios de Viacom que están regidos por esta política de privacidad, por lo general, no están destinados a menores de edad.
[0.0823400542140007, -0.004498262889683247, 0.023361222818493843, -0.07224256545305252, -0.0026566446758806705, ...]
- You gotta promise me, doc.
- Prometa-me, Doutor.
[-0.010264741256833076, 0.004426243249326944, 0.06644191592931747, -0.03601944074034691, 0.009492351673543453, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 701,304 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 22.86 tokens
- max: 102 tokens
- min: 5 tokens
- mean: 24.97 tokens
- max: 100 tokens
- size: 384 elements
- Samples:
english non_english label Manufacturer: Rourke Educational Media
Gravadora: Rourke Meios Educativos
[0.016672328114509583, 0.025462372228503227, 0.024576706811785698, -0.01961815170943737, 0.014413068071007729, ...]
What in hells success if it isnt right there in your Stevenson sonnet, which outranks Henleys Apparition, in that Love-cycle, in those sea- poems?
¿Qué demonios es el éxito sino lo que hay en su soneto sobre Stevenson, superior a la Aparición de Henley, o en su Ciclo del amor y en sus Poemas del mar?
[0.0172938983887434, -0.04857725650072098, -0.05557125806808472, -0.012614483945071697, -0.014296879060566425, ...]
Everyone knows, and you know already that you are existing; there is no need, it is futile.
Todo mundo sabe, e você já sabe que está existindo; não há nenhuma necessidade disso, isso é fútil.
[-0.005980388727039099, -0.02314012683928013, 0.022277960553765297, -0.008318797685205936, -0.0034421393647789955, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512gradient_accumulation_steps
: 2learning_rate
: 0.0003num_train_epochs
: 8warmup_ratio
: 0.15bf16
: Truedataloader_num_workers
: 8
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | stsb_multi_mt-pt_spearman_cosine | stsb_multi_mt-en_spearman_cosine | stsb_multi_mt-es_spearman_cosine |
---|---|---|---|---|---|---|
0.0138 | 500 | 0.007 | - | - | - | - |
0.0277 | 1000 | 0.0048 | - | - | - | - |
0.0415 | 1500 | 0.0042 | - | - | - | - |
0.0554 | 2000 | 0.0038 | - | - | - | - |
0.0692 | 2500 | 0.0035 | - | - | - | - |
0.0830 | 3000 | 0.0034 | - | - | - | - |
0.0969 | 3500 | 0.0032 | - | - | - | - |
0.1107 | 4000 | 0.0031 | - | - | - | - |
0.1245 | 4500 | 0.003 | - | - | - | - |
0.1384 | 5000 | 0.0029 | 0.0014 | 0.3870 | 0.4251 | 0.4009 |
0.1522 | 5500 | 0.0027 | - | - | - | - |
0.1661 | 6000 | 0.0026 | - | - | - | - |
0.1799 | 6500 | 0.0025 | - | - | - | - |
0.1937 | 7000 | 0.0024 | - | - | - | - |
0.2076 | 7500 | 0.0024 | - | - | - | - |
0.2214 | 8000 | 0.0023 | - | - | - | - |
0.2352 | 8500 | 0.0022 | - | - | - | - |
0.2491 | 9000 | 0.0021 | - | - | - | - |
0.2629 | 9500 | 0.0021 | - | - | - | - |
0.2768 | 10000 | 0.002 | 0.0009 | 0.5930 | 0.6429 | 0.6127 |
0.2906 | 10500 | 0.0019 | - | - | - | - |
0.3044 | 11000 | 0.0019 | - | - | - | - |
0.3183 | 11500 | 0.0018 | - | - | - | - |
0.3321 | 12000 | 0.0018 | - | - | - | - |
0.3459 | 12500 | 0.0017 | - | - | - | - |
0.3598 | 13000 | 0.0017 | - | - | - | - |
0.3736 | 13500 | 0.0016 | - | - | - | - |
0.3875 | 14000 | 0.0016 | - | - | - | - |
0.4013 | 14500 | 0.0015 | - | - | - | - |
0.4151 | 15000 | 0.0015 | 0.0007 | 0.6874 | 0.7547 | 0.7104 |
0.4290 | 15500 | 0.0015 | - | - | - | - |
0.4428 | 16000 | 0.0014 | - | - | - | - |
0.4566 | 16500 | 0.0014 | - | - | - | - |
0.4705 | 17000 | 0.0014 | - | - | - | - |
0.4843 | 17500 | 0.0013 | - | - | - | - |
0.4982 | 18000 | 0.0013 | - | - | - | - |
0.5120 | 18500 | 0.0013 | - | - | - | - |
0.5258 | 19000 | 0.0013 | - | - | - | - |
0.5397 | 19500 | 0.0012 | - | - | - | - |
0.5535 | 20000 | 0.0012 | 0.0006 | 0.7185 | 0.7866 | 0.7445 |
0.5673 | 20500 | 0.0012 | - | - | - | - |
0.5812 | 21000 | 0.0012 | - | - | - | - |
0.5950 | 21500 | 0.0012 | - | - | - | - |
0.6089 | 22000 | 0.0012 | - | - | - | - |
0.6227 | 22500 | 0.0012 | - | - | - | - |
0.6365 | 23000 | 0.0011 | - | - | - | - |
0.6504 | 23500 | 0.0011 | - | - | - | - |
0.6642 | 24000 | 0.0011 | - | - | - | - |
0.6781 | 24500 | 0.0011 | - | - | - | - |
0.6919 | 25000 | 0.0011 | 0.0005 | 0.7381 | 0.8008 | 0.7642 |
0.7057 | 25500 | 0.0011 | - | - | - | - |
0.7196 | 26000 | 0.0011 | - | - | - | - |
0.7334 | 26500 | 0.0011 | - | - | - | - |
0.7472 | 27000 | 0.0011 | - | - | - | - |
0.7611 | 27500 | 0.001 | - | - | - | - |
0.7749 | 28000 | 0.001 | - | - | - | - |
0.7888 | 28500 | 0.001 | - | - | - | - |
0.8026 | 29000 | 0.001 | - | - | - | - |
0.8164 | 29500 | 0.001 | - | - | - | - |
0.8303 | 30000 | 0.001 | 0.0005 | 0.7555 | 0.8184 | 0.7799 |
0.8441 | 30500 | 0.001 | - | - | - | - |
0.8579 | 31000 | 0.001 | - | - | - | - |
0.8718 | 31500 | 0.001 | - | - | - | - |
0.8856 | 32000 | 0.001 | - | - | - | - |
0.8995 | 32500 | 0.001 | - | - | - | - |
0.9133 | 33000 | 0.001 | - | - | - | - |
0.9271 | 33500 | 0.001 | - | - | - | - |
0.9410 | 34000 | 0.001 | - | - | - | - |
0.9548 | 34500 | 0.001 | - | - | - | - |
0.9686 | 35000 | 0.001 | 0.0004 | 0.7628 | 0.8230 | 0.7883 |
0.9825 | 35500 | 0.001 | - | - | - | - |
0.9963 | 36000 | 0.0009 | - | - | - | - |
1.0102 | 36500 | 0.0009 | - | - | - | - |
1.0240 | 37000 | 0.0009 | - | - | - | - |
1.0378 | 37500 | 0.0009 | - | - | - | - |
1.0517 | 38000 | 0.0009 | - | - | - | - |
1.0655 | 38500 | 0.0009 | - | - | - | - |
1.0793 | 39000 | 0.0009 | - | - | - | - |
1.0932 | 39500 | 0.0009 | - | - | - | - |
1.1070 | 40000 | 0.0009 | 0.0004 | 0.7701 | 0.8313 | 0.7975 |
1.1209 | 40500 | 0.0009 | - | - | - | - |
1.1347 | 41000 | 0.0009 | - | - | - | - |
1.1485 | 41500 | 0.0009 | - | - | - | - |
1.1624 | 42000 | 0.0009 | - | - | - | - |
1.1762 | 42500 | 0.0009 | - | - | - | - |
1.1900 | 43000 | 0.0009 | - | - | - | - |
1.2039 | 43500 | 0.0009 | - | - | - | - |
1.2177 | 44000 | 0.0009 | - | - | - | - |
1.2316 | 44500 | 0.0009 | - | - | - | - |
1.2454 | 45000 | 0.0009 | 0.0004 | 0.7747 | 0.8344 | 0.7990 |
1.2592 | 45500 | 0.0009 | - | - | - | - |
1.2731 | 46000 | 0.0009 | - | - | - | - |
1.2869 | 46500 | 0.0009 | - | - | - | - |
1.3008 | 47000 | 0.0009 | - | - | - | - |
1.3146 | 47500 | 0.0009 | - | - | - | - |
1.3284 | 48000 | 0.0009 | - | - | - | - |
1.3423 | 48500 | 0.0009 | - | - | - | - |
1.3561 | 49000 | 0.0009 | - | - | - | - |
1.3699 | 49500 | 0.0009 | - | - | - | - |
1.3838 | 50000 | 0.0009 | 0.0004 | 0.7824 | 0.8372 | 0.8111 |
1.3976 | 50500 | 0.0009 | - | - | - | - |
1.4115 | 51000 | 0.0009 | - | - | - | - |
1.4253 | 51500 | 0.0009 | - | - | - | - |
1.4391 | 52000 | 0.0009 | - | - | - | - |
1.4530 | 52500 | 0.0009 | - | - | - | - |
1.4668 | 53000 | 0.0009 | - | - | - | - |
1.4806 | 53500 | 0.0009 | - | - | - | - |
1.4945 | 54000 | 0.0008 | - | - | - | - |
1.5083 | 54500 | 0.0008 | - | - | - | - |
1.5222 | 55000 | 0.0008 | 0.0004 | 0.7882 | 0.8426 | 0.8149 |
1.5360 | 55500 | 0.0008 | - | - | - | - |
1.5498 | 56000 | 0.0008 | - | - | - | - |
1.5637 | 56500 | 0.0008 | - | - | - | - |
1.5775 | 57000 | 0.0008 | - | - | - | - |
1.5913 | 57500 | 0.0008 | - | - | - | - |
1.6052 | 58000 | 0.0008 | - | - | - | - |
1.6190 | 58500 | 0.0008 | - | - | - | - |
1.6329 | 59000 | 0.0008 | - | - | - | - |
1.6467 | 59500 | 0.0008 | - | - | - | - |
1.6605 | 60000 | 0.0008 | 0.0004 | 0.7969 | 0.8453 | 0.8242 |
1.6744 | 60500 | 0.0008 | - | - | - | - |
1.6882 | 61000 | 0.0008 | - | - | - | - |
1.7020 | 61500 | 0.0008 | - | - | - | - |
1.7159 | 62000 | 0.0008 | - | - | - | - |
1.7297 | 62500 | 0.0008 | - | - | - | - |
1.7436 | 63000 | 0.0008 | - | - | - | - |
1.7574 | 63500 | 0.0008 | - | - | - | - |
1.7712 | 64000 | 0.0008 | - | - | - | - |
1.7851 | 64500 | 0.0008 | - | - | - | - |
1.7989 | 65000 | 0.0008 | 0.0004 | 0.7970 | 0.8473 | 0.8254 |
1.8127 | 65500 | 0.0008 | - | - | - | - |
1.8266 | 66000 | 0.0008 | - | - | - | - |
1.8404 | 66500 | 0.0008 | - | - | - | - |
1.8543 | 67000 | 0.0008 | - | - | - | - |
1.8681 | 67500 | 0.0008 | - | - | - | - |
1.8819 | 68000 | 0.0008 | - | - | - | - |
1.8958 | 68500 | 0.0008 | - | - | - | - |
1.9096 | 69000 | 0.0008 | - | - | - | - |
1.9234 | 69500 | 0.0008 | - | - | - | - |
1.9373 | 70000 | 0.0008 | 0.0004 | 0.7959 | 0.8459 | 0.8234 |
1.9511 | 70500 | 0.0008 | - | - | - | - |
1.9650 | 71000 | 0.0008 | - | - | - | - |
1.9788 | 71500 | 0.0008 | - | - | - | - |
1.9926 | 72000 | 0.0008 | - | - | - | - |
2.0065 | 72500 | 0.0008 | - | - | - | - |
2.0203 | 73000 | 0.0008 | - | - | - | - |
2.0342 | 73500 | 0.0008 | - | - | - | - |
2.0480 | 74000 | 0.0008 | - | - | - | - |
2.0618 | 74500 | 0.0008 | - | - | - | - |
2.0757 | 75000 | 0.0008 | 0.0004 | 0.7995 | 0.8489 | 0.8277 |
2.0895 | 75500 | 0.0008 | - | - | - | - |
2.1033 | 76000 | 0.0008 | - | - | - | - |
2.1172 | 76500 | 0.0008 | - | - | - | - |
2.1310 | 77000 | 0.0008 | - | - | - | - |
2.1449 | 77500 | 0.0008 | - | - | - | - |
2.1587 | 78000 | 0.0008 | - | - | - | - |
2.1725 | 78500 | 0.0008 | - | - | - | - |
2.1864 | 79000 | 0.0008 | - | - | - | - |
2.2002 | 79500 | 0.0008 | - | - | - | - |
2.2140 | 80000 | 0.0008 | 0.0004 | 0.7994 | 0.8462 | 0.8237 |
2.2279 | 80500 | 0.0008 | - | - | - | - |
2.2417 | 81000 | 0.0008 | - | - | - | - |
2.2556 | 81500 | 0.0008 | - | - | - | - |
2.2694 | 82000 | 0.0008 | - | - | - | - |
2.2832 | 82500 | 0.0008 | - | - | - | - |
2.2971 | 83000 | 0.0008 | - | - | - | - |
2.3109 | 83500 | 0.0008 | - | - | - | - |
2.3247 | 84000 | 0.0008 | - | - | - | - |
2.3386 | 84500 | 0.0008 | - | - | - | - |
2.3524 | 85000 | 0.0008 | 0.0004 | 0.8074 | 0.8499 | 0.8300 |
2.3663 | 85500 | 0.0008 | - | - | - | - |
2.3801 | 86000 | 0.0008 | - | - | - | - |
2.3939 | 86500 | 0.0008 | - | - | - | - |
2.4078 | 87000 | 0.0008 | - | - | - | - |
2.4216 | 87500 | 0.0008 | - | - | - | - |
2.4354 | 88000 | 0.0008 | - | - | - | - |
2.4493 | 88500 | 0.0008 | - | - | - | - |
2.4631 | 89000 | 0.0008 | - | - | - | - |
2.4770 | 89500 | 0.0008 | - | - | - | - |
2.4908 | 90000 | 0.0008 | 0.0003 | 0.8088 | 0.8506 | 0.8315 |
2.5046 | 90500 | 0.0008 | - | - | - | - |
2.5185 | 91000 | 0.0008 | - | - | - | - |
2.5323 | 91500 | 0.0008 | - | - | - | - |
2.5461 | 92000 | 0.0008 | - | - | - | - |
2.5600 | 92500 | 0.0008 | - | - | - | - |
2.5738 | 93000 | 0.0008 | - | - | - | - |
2.5877 | 93500 | 0.0008 | - | - | - | - |
2.6015 | 94000 | 0.0008 | - | - | - | - |
2.6153 | 94500 | 0.0008 | - | - | - | - |
2.6292 | 95000 | 0.0008 | 0.0003 | 0.8094 | 0.8518 | 0.8337 |
2.6430 | 95500 | 0.0008 | - | - | - | - |
2.6569 | 96000 | 0.0008 | - | - | - | - |
2.6707 | 96500 | 0.0008 | - | - | - | - |
2.6845 | 97000 | 0.0008 | - | - | - | - |
2.6984 | 97500 | 0.0008 | - | - | - | - |
2.7122 | 98000 | 0.0008 | - | - | - | - |
2.7260 | 98500 | 0.0008 | - | - | - | - |
2.7399 | 99000 | 0.0008 | - | - | - | - |
2.7537 | 99500 | 0.0008 | - | - | - | - |
2.7676 | 100000 | 0.0008 | 0.0003 | 0.8083 | 0.8514 | 0.8303 |
2.7814 | 100500 | 0.0008 | - | - | - | - |
2.7952 | 101000 | 0.0008 | - | - | - | - |
2.8091 | 101500 | 0.0008 | - | - | - | - |
2.8229 | 102000 | 0.0008 | - | - | - | - |
2.8367 | 102500 | 0.0008 | - | - | - | - |
2.8506 | 103000 | 0.0008 | - | - | - | - |
2.8644 | 103500 | 0.0008 | - | - | - | - |
2.8783 | 104000 | 0.0008 | - | - | - | - |
2.8921 | 104500 | 0.0008 | - | - | - | - |
2.9059 | 105000 | 0.0008 | 0.0003 | 0.8126 | 0.8521 | 0.8352 |
2.9198 | 105500 | 0.0008 | - | - | - | - |
2.9336 | 106000 | 0.0008 | - | - | - | - |
2.9474 | 106500 | 0.0008 | - | - | - | - |
2.9613 | 107000 | 0.0008 | - | - | - | - |
2.9751 | 107500 | 0.0008 | - | - | - | - |
2.9890 | 108000 | 0.0008 | - | - | - | - |
3.0028 | 108500 | 0.0008 | - | - | - | - |
3.0166 | 109000 | 0.0008 | - | - | - | - |
3.0305 | 109500 | 0.0008 | - | - | - | - |
3.0443 | 110000 | 0.0008 | 0.0003 | 0.8149 | 0.8515 | 0.8340 |
3.0581 | 110500 | 0.0008 | - | - | - | - |
3.0720 | 111000 | 0.0008 | - | - | - | - |
3.0858 | 111500 | 0.0008 | - | - | - | - |
3.0997 | 112000 | 0.0008 | - | - | - | - |
3.1135 | 112500 | 0.0008 | - | - | - | - |
3.1273 | 113000 | 0.0008 | - | - | - | - |
3.1412 | 113500 | 0.0008 | - | - | - | - |
3.1550 | 114000 | 0.0008 | - | - | - | - |
3.1688 | 114500 | 0.0008 | - | - | - | - |
3.1827 | 115000 | 0.0008 | 0.0003 | 0.8160 | 0.8527 | 0.8348 |
3.1965 | 115500 | 0.0008 | - | - | - | - |
3.2104 | 116000 | 0.0008 | - | - | - | - |
3.2242 | 116500 | 0.0008 | - | - | - | - |
3.2380 | 117000 | 0.0008 | - | - | - | - |
3.2519 | 117500 | 0.0008 | - | - | - | - |
3.2657 | 118000 | 0.0008 | - | - | - | - |
3.2796 | 118500 | 0.0008 | - | - | - | - |
3.2934 | 119000 | 0.0008 | - | - | - | - |
3.3072 | 119500 | 0.0008 | - | - | - | - |
3.3211 | 120000 | 0.0008 | 0.0003 | 0.8176 | 0.8524 | 0.8359 |
3.3349 | 120500 | 0.0008 | - | - | - | - |
3.3487 | 121000 | 0.0008 | - | - | - | - |
3.3626 | 121500 | 0.0008 | - | - | - | - |
3.3764 | 122000 | 0.0008 | - | - | - | - |
3.3903 | 122500 | 0.0008 | - | - | - | - |
3.4041 | 123000 | 0.0008 | - | - | - | - |
3.4179 | 123500 | 0.0008 | - | - | - | - |
3.4318 | 124000 | 0.0008 | - | - | - | - |
3.4456 | 124500 | 0.0008 | - | - | - | - |
3.4594 | 125000 | 0.0008 | 0.0003 | 0.8177 | 0.8541 | 0.8379 |
3.4733 | 125500 | 0.0008 | - | - | - | - |
3.4871 | 126000 | 0.0008 | - | - | - | - |
3.5010 | 126500 | 0.0008 | - | - | - | - |
3.5148 | 127000 | 0.0008 | - | - | - | - |
3.5286 | 127500 | 0.0008 | - | - | - | - |
3.5425 | 128000 | 0.0008 | - | - | - | - |
3.5563 | 128500 | 0.0008 | - | - | - | - |
3.5701 | 129000 | 0.0008 | - | - | - | - |
3.5840 | 129500 | 0.0008 | - | - | - | - |
3.5978 | 130000 | 0.0008 | 0.0003 | 0.8162 | 0.8520 | 0.8371 |
3.6117 | 130500 | 0.0008 | - | - | - | - |
3.6255 | 131000 | 0.0008 | - | - | - | - |
3.6393 | 131500 | 0.0008 | - | - | - | - |
3.6532 | 132000 | 0.0008 | - | - | - | - |
3.6670 | 132500 | 0.0008 | - | - | - | - |
3.6808 | 133000 | 0.0008 | - | - | - | - |
3.6947 | 133500 | 0.0008 | - | - | - | - |
3.7085 | 134000 | 0.0008 | - | - | - | - |
3.7224 | 134500 | 0.0008 | - | - | - | - |
3.7362 | 135000 | 0.0008 | 0.0003 | 0.8178 | 0.8542 | 0.8378 |
3.7500 | 135500 | 0.0008 | - | - | - | - |
3.7639 | 136000 | 0.0008 | - | - | - | - |
3.7777 | 136500 | 0.0008 | - | - | - | - |
3.7915 | 137000 | 0.0008 | - | - | - | - |
3.8054 | 137500 | 0.0008 | - | - | - | - |
3.8192 | 138000 | 0.0008 | - | - | - | - |
3.8331 | 138500 | 0.0008 | - | - | - | - |
3.8469 | 139000 | 0.0008 | - | - | - | - |
3.8607 | 139500 | 0.0008 | - | - | - | - |
3.8746 | 140000 | 0.0008 | 0.0003 | 0.8214 | 0.8542 | 0.8408 |
3.8884 | 140500 | 0.0008 | - | - | - | - |
3.9023 | 141000 | 0.0008 | - | - | - | - |
3.9161 | 141500 | 0.0007 | - | - | - | - |
3.9299 | 142000 | 0.0007 | - | - | - | - |
3.9438 | 142500 | 0.0008 | - | - | - | - |
3.9576 | 143000 | 0.0008 | - | - | - | - |
3.9714 | 143500 | 0.0007 | - | - | - | - |
3.9853 | 144000 | 0.0007 | - | - | - | - |
3.9991 | 144500 | 0.0007 | - | - | - | - |
4.0130 | 145000 | 0.0007 | 0.0003 | 0.8163 | 0.8521 | 0.8365 |
4.0268 | 145500 | 0.0007 | - | - | - | - |
4.0406 | 146000 | 0.0007 | - | - | - | - |
4.0545 | 146500 | 0.0007 | - | - | - | - |
4.0683 | 147000 | 0.0007 | - | - | - | - |
4.0821 | 147500 | 0.0007 | - | - | - | - |
4.0960 | 148000 | 0.0007 | - | - | - | - |
4.1098 | 148500 | 0.0007 | - | - | - | - |
4.1237 | 149000 | 0.0007 | - | - | - | - |
4.1375 | 149500 | 0.0007 | - | - | - | - |
4.1513 | 150000 | 0.0007 | 0.0003 | 0.8183 | 0.8537 | 0.8374 |
4.1652 | 150500 | 0.0007 | - | - | - | - |
4.1790 | 151000 | 0.0007 | - | - | - | - |
4.1928 | 151500 | 0.0007 | - | - | - | - |
4.2067 | 152000 | 0.0007 | - | - | - | - |
4.2205 | 152500 | 0.0007 | - | - | - | - |
4.2344 | 153000 | 0.0007 | - | - | - | - |
4.2482 | 153500 | 0.0007 | - | - | - | - |
4.2620 | 154000 | 0.0007 | - | - | - | - |
4.2759 | 154500 | 0.0007 | - | - | - | - |
4.2897 | 155000 | 0.0007 | 0.0003 | 0.8187 | 0.8525 | 0.8387 |
4.3035 | 155500 | 0.0007 | - | - | - | - |
4.3174 | 156000 | 0.0007 | - | - | - | - |
4.3312 | 156500 | 0.0007 | - | - | - | - |
4.3451 | 157000 | 0.0007 | - | - | - | - |
4.3589 | 157500 | 0.0007 | - | - | - | - |
4.3727 | 158000 | 0.0007 | - | - | - | - |
4.3866 | 158500 | 0.0007 | - | - | - | - |
4.4004 | 159000 | 0.0007 | - | - | - | - |
4.4142 | 159500 | 0.0007 | - | - | - | - |
4.4281 | 160000 | 0.0007 | 0.0003 | 0.8152 | 0.8516 | 0.8359 |
4.4419 | 160500 | 0.0007 | - | - | - | - |
4.4558 | 161000 | 0.0007 | - | - | - | - |
4.4696 | 161500 | 0.0007 | - | - | - | - |
4.4834 | 162000 | 0.0007 | - | - | - | - |
4.4973 | 162500 | 0.0007 | - | - | - | - |
4.5111 | 163000 | 0.0007 | - | - | - | - |
4.5249 | 163500 | 0.0007 | - | - | - | - |
4.5388 | 164000 | 0.0007 | - | - | - | - |
4.5526 | 164500 | 0.0007 | - | - | - | - |
4.5665 | 165000 | 0.0007 | 0.0003 | 0.8192 | 0.8532 | 0.8407 |
4.5803 | 165500 | 0.0007 | - | - | - | - |
4.5941 | 166000 | 0.0007 | - | - | - | - |
4.6080 | 166500 | 0.0007 | - | - | - | - |
4.6218 | 167000 | 0.0007 | - | - | - | - |
4.6357 | 167500 | 0.0007 | - | - | - | - |
4.6495 | 168000 | 0.0007 | - | - | - | - |
4.6633 | 168500 | 0.0007 | - | - | - | - |
4.6772 | 169000 | 0.0007 | - | - | - | - |
4.6910 | 169500 | 0.0007 | - | - | - | - |
4.7048 | 170000 | 0.0007 | 0.0003 | 0.8205 | 0.8526 | 0.8393 |
4.7187 | 170500 | 0.0007 | - | - | - | - |
4.7325 | 171000 | 0.0007 | - | - | - | - |
4.7464 | 171500 | 0.0007 | - | - | - | - |
4.7602 | 172000 | 0.0007 | - | - | - | - |
4.7740 | 172500 | 0.0007 | - | - | - | - |
4.7879 | 173000 | 0.0007 | - | - | - | - |
4.8017 | 173500 | 0.0007 | - | - | - | - |
4.8155 | 174000 | 0.0007 | - | - | - | - |
4.8294 | 174500 | 0.0007 | - | - | - | - |
4.8432 | 175000 | 0.0007 | 0.0003 | 0.8191 | 0.8524 | 0.8396 |
4.8571 | 175500 | 0.0007 | - | - | - | - |
4.8709 | 176000 | 0.0007 | - | - | - | - |
4.8847 | 176500 | 0.0007 | - | - | - | - |
4.8986 | 177000 | 0.0007 | - | - | - | - |
4.9124 | 177500 | 0.0007 | - | - | - | - |
4.9262 | 178000 | 0.0007 | - | - | - | - |
4.9401 | 178500 | 0.0007 | - | - | - | - |
4.9539 | 179000 | 0.0007 | - | - | - | - |
4.9678 | 179500 | 0.0007 | - | - | - | - |
4.9816 | 180000 | 0.0007 | 0.0003 | 0.8202 | 0.8538 | 0.8426 |
4.9954 | 180500 | 0.0007 | - | - | - | - |
5.0093 | 181000 | 0.0007 | - | - | - | - |
5.0231 | 181500 | 0.0007 | - | - | - | - |
5.0369 | 182000 | 0.0007 | - | - | - | - |
5.0508 | 182500 | 0.0007 | - | - | - | - |
5.0646 | 183000 | 0.0007 | - | - | - | - |
5.0785 | 183500 | 0.0007 | - | - | - | - |
5.0923 | 184000 | 0.0007 | - | - | - | - |
5.1061 | 184500 | 0.0007 | - | - | - | - |
5.1200 | 185000 | 0.0007 | 0.0003 | 0.8221 | 0.8548 | 0.8425 |
5.1338 | 185500 | 0.0007 | - | - | - | - |
5.1476 | 186000 | 0.0007 | - | - | - | - |
5.1615 | 186500 | 0.0007 | - | - | - | - |
5.1753 | 187000 | 0.0007 | - | - | - | - |
5.1892 | 187500 | 0.0007 | - | - | - | - |
5.2030 | 188000 | 0.0007 | - | - | - | - |
5.2168 | 188500 | 0.0007 | - | - | - | - |
5.2307 | 189000 | 0.0007 | - | - | - | - |
5.2445 | 189500 | 0.0007 | - | - | - | - |
5.2584 | 190000 | 0.0007 | 0.0003 | 0.8205 | 0.8530 | 0.8401 |
5.2722 | 190500 | 0.0007 | - | - | - | - |
5.2860 | 191000 | 0.0007 | - | - | - | - |
5.2999 | 191500 | 0.0007 | - | - | - | - |
5.3137 | 192000 | 0.0007 | - | - | - | - |
5.3275 | 192500 | 0.0007 | - | - | - | - |
5.3414 | 193000 | 0.0007 | - | - | - | - |
5.3552 | 193500 | 0.0007 | - | - | - | - |
5.3691 | 194000 | 0.0007 | - | - | - | - |
5.3829 | 194500 | 0.0007 | - | - | - | - |
5.3967 | 195000 | 0.0007 | 0.0003 | 0.8220 | 0.8526 | 0.8415 |
5.4106 | 195500 | 0.0007 | - | - | - | - |
5.4244 | 196000 | 0.0007 | - | - | - | - |
5.4382 | 196500 | 0.0007 | - | - | - | - |
5.4521 | 197000 | 0.0007 | - | - | - | - |
5.4659 | 197500 | 0.0007 | - | - | - | - |
5.4798 | 198000 | 0.0007 | - | - | - | - |
5.4936 | 198500 | 0.0007 | - | - | - | - |
5.5074 | 199000 | 0.0007 | - | - | - | - |
5.5213 | 199500 | 0.0007 | - | - | - | - |
5.5351 | 200000 | 0.0007 | 0.0003 | 0.8187 | 0.8525 | 0.8395 |
5.5489 | 200500 | 0.0007 | - | - | - | - |
5.5628 | 201000 | 0.0007 | - | - | - | - |
5.5766 | 201500 | 0.0007 | - | - | - | - |
5.5905 | 202000 | 0.0007 | - | - | - | - |
5.6043 | 202500 | 0.0007 | - | - | - | - |
5.6181 | 203000 | 0.0007 | - | - | - | - |
5.6320 | 203500 | 0.0007 | - | - | - | - |
5.6458 | 204000 | 0.0007 | - | - | - | - |
5.6596 | 204500 | 0.0007 | - | - | - | - |
5.6735 | 205000 | 0.0007 | 0.0003 | 0.8219 | 0.8531 | 0.8426 |
5.6873 | 205500 | 0.0007 | - | - | - | - |
5.7012 | 206000 | 0.0007 | - | - | - | - |
5.7150 | 206500 | 0.0007 | - | - | - | - |
5.7288 | 207000 | 0.0007 | - | - | - | - |
5.7427 | 207500 | 0.0007 | - | - | - | - |
5.7565 | 208000 | 0.0007 | - | - | - | - |
5.7703 | 208500 | 0.0007 | - | - | - | - |
5.7842 | 209000 | 0.0007 | - | - | - | - |
5.7980 | 209500 | 0.0007 | - | - | - | - |
5.8119 | 210000 | 0.0007 | 0.0003 | 0.8226 | 0.8535 | 0.8413 |
5.8257 | 210500 | 0.0007 | - | - | - | - |
5.8395 | 211000 | 0.0007 | - | - | - | - |
5.8534 | 211500 | 0.0007 | - | - | - | - |
5.8672 | 212000 | 0.0007 | - | - | - | - |
5.8811 | 212500 | 0.0007 | - | - | - | - |
5.8949 | 213000 | 0.0007 | - | - | - | - |
5.9087 | 213500 | 0.0007 | - | - | - | - |
5.9226 | 214000 | 0.0007 | - | - | - | - |
5.9364 | 214500 | 0.0007 | - | - | - | - |
5.9502 | 215000 | 0.0007 | 0.0003 | 0.8223 | 0.8542 | 0.8416 |
5.9641 | 215500 | 0.0007 | - | - | - | - |
5.9779 | 216000 | 0.0007 | - | - | - | - |
5.9918 | 216500 | 0.0007 | - | - | - | - |
6.0056 | 217000 | 0.0007 | - | - | - | - |
6.0194 | 217500 | 0.0007 | - | - | - | - |
6.0333 | 218000 | 0.0007 | - | - | - | - |
6.0471 | 218500 | 0.0007 | - | - | - | - |
6.0609 | 219000 | 0.0007 | - | - | - | - |
6.0748 | 219500 | 0.0007 | - | - | - | - |
6.0886 | 220000 | 0.0007 | 0.0003 | 0.8215 | 0.8538 | 0.8416 |
6.1025 | 220500 | 0.0007 | - | - | - | - |
6.1163 | 221000 | 0.0007 | - | - | - | - |
6.1301 | 221500 | 0.0007 | - | - | - | - |
6.1440 | 222000 | 0.0007 | - | - | - | - |
6.1578 | 222500 | 0.0007 | - | - | - | - |
6.1716 | 223000 | 0.0007 | - | - | - | - |
6.1855 | 223500 | 0.0007 | - | - | - | - |
6.1993 | 224000 | 0.0007 | - | - | - | - |
6.2132 | 224500 | 0.0007 | - | - | - | - |
6.2270 | 225000 | 0.0007 | 0.0003 | 0.8243 | 0.8545 | 0.8415 |
6.2408 | 225500 | 0.0007 | - | - | - | - |
6.2547 | 226000 | 0.0007 | - | - | - | - |
6.2685 | 226500 | 0.0007 | - | - | - | - |
6.2823 | 227000 | 0.0007 | - | - | - | - |
6.2962 | 227500 | 0.0007 | - | - | - | - |
6.3100 | 228000 | 0.0007 | - | - | - | - |
6.3239 | 228500 | 0.0007 | - | - | - | - |
6.3377 | 229000 | 0.0007 | - | - | - | - |
6.3515 | 229500 | 0.0007 | - | - | - | - |
6.3654 | 230000 | 0.0007 | 0.0003 | 0.8234 | 0.8539 | 0.8418 |
6.3792 | 230500 | 0.0007 | - | - | - | - |
6.3930 | 231000 | 0.0007 | - | - | - | - |
6.4069 | 231500 | 0.0007 | - | - | - | - |
6.4207 | 232000 | 0.0007 | - | - | - | - |
6.4346 | 232500 | 0.0007 | - | - | - | - |
6.4484 | 233000 | 0.0007 | - | - | - | - |
6.4622 | 233500 | 0.0007 | - | - | - | - |
6.4761 | 234000 | 0.0007 | - | - | - | - |
6.4899 | 234500 | 0.0007 | - | - | - | - |
6.5038 | 235000 | 0.0007 | 0.0003 | 0.8217 | 0.8537 | 0.8410 |
6.5176 | 235500 | 0.0007 | - | - | - | - |
6.5314 | 236000 | 0.0007 | - | - | - | - |
6.5453 | 236500 | 0.0007 | - | - | - | - |
6.5591 | 237000 | 0.0007 | - | - | - | - |
6.5729 | 237500 | 0.0007 | - | - | - | - |
6.5868 | 238000 | 0.0007 | - | - | - | - |
6.6006 | 238500 | 0.0007 | - | - | - | - |
6.6145 | 239000 | 0.0007 | - | - | - | - |
6.6283 | 239500 | 0.0007 | - | - | - | - |
6.6421 | 240000 | 0.0007 | 0.0003 | 0.8239 | 0.8537 | 0.8434 |
6.6560 | 240500 | 0.0007 | - | - | - | - |
6.6698 | 241000 | 0.0007 | - | - | - | - |
6.6836 | 241500 | 0.0007 | - | - | - | - |
6.6975 | 242000 | 0.0007 | - | - | - | - |
6.7113 | 242500 | 0.0007 | - | - | - | - |
6.7252 | 243000 | 0.0007 | - | - | - | - |
6.7390 | 243500 | 0.0007 | - | - | - | - |
6.7528 | 244000 | 0.0007 | - | - | - | - |
6.7667 | 244500 | 0.0007 | - | - | - | - |
6.7805 | 245000 | 0.0007 | 0.0003 | 0.8233 | 0.8534 | 0.8431 |
6.7943 | 245500 | 0.0007 | - | - | - | - |
6.8082 | 246000 | 0.0007 | - | - | - | - |
6.8220 | 246500 | 0.0007 | - | - | - | - |
6.8359 | 247000 | 0.0007 | - | - | - | - |
6.8497 | 247500 | 0.0007 | - | - | - | - |
6.8635 | 248000 | 0.0007 | - | - | - | - |
6.8774 | 248500 | 0.0007 | - | - | - | - |
6.8912 | 249000 | 0.0007 | - | - | - | - |
6.9050 | 249500 | 0.0007 | - | - | - | - |
6.9189 | 250000 | 0.0007 | 0.0003 | 0.8239 | 0.8543 | 0.8432 |
6.9327 | 250500 | 0.0007 | - | - | - | - |
6.9466 | 251000 | 0.0007 | - | - | - | - |
6.9604 | 251500 | 0.0007 | - | - | - | - |
6.9742 | 252000 | 0.0007 | - | - | - | - |
6.9881 | 252500 | 0.0007 | - | - | - | - |
7.0019 | 253000 | 0.0007 | - | - | - | - |
7.0157 | 253500 | 0.0007 | - | - | - | - |
7.0296 | 254000 | 0.0007 | - | - | - | - |
7.0434 | 254500 | 0.0007 | - | - | - | - |
7.0573 | 255000 | 0.0007 | 0.0003 | 0.8242 | 0.8541 | 0.8429 |
7.0711 | 255500 | 0.0007 | - | - | - | - |
7.0849 | 256000 | 0.0007 | - | - | - | - |
7.0988 | 256500 | 0.0007 | - | - | - | - |
7.1126 | 257000 | 0.0007 | - | - | - | - |
7.1264 | 257500 | 0.0007 | - | - | - | - |
7.1403 | 258000 | 0.0007 | - | - | - | - |
7.1541 | 258500 | 0.0007 | - | - | - | - |
7.1680 | 259000 | 0.0007 | - | - | - | - |
7.1818 | 259500 | 0.0007 | - | - | - | - |
7.1956 | 260000 | 0.0007 | 0.0003 | 0.8236 | 0.8537 | 0.8418 |
7.2095 | 260500 | 0.0007 | - | - | - | - |
7.2233 | 261000 | 0.0007 | - | - | - | - |
7.2372 | 261500 | 0.0007 | - | - | - | - |
7.2510 | 262000 | 0.0007 | - | - | - | - |
7.2648 | 262500 | 0.0007 | - | - | - | - |
7.2787 | 263000 | 0.0007 | - | - | - | - |
7.2925 | 263500 | 0.0007 | - | - | - | - |
7.3063 | 264000 | 0.0007 | - | - | - | - |
7.3202 | 264500 | 0.0007 | - | - | - | - |
7.3340 | 265000 | 0.0007 | 0.0003 | 0.8245 | 0.8536 | 0.8420 |
7.3479 | 265500 | 0.0007 | - | - | - | - |
7.3617 | 266000 | 0.0007 | - | - | - | - |
7.3755 | 266500 | 0.0007 | - | - | - | - |
7.3894 | 267000 | 0.0007 | - | - | - | - |
7.4032 | 267500 | 0.0007 | - | - | - | - |
7.4170 | 268000 | 0.0007 | - | - | - | - |
7.4309 | 268500 | 0.0007 | - | - | - | - |
7.4447 | 269000 | 0.0007 | - | - | - | - |
7.4586 | 269500 | 0.0007 | - | - | - | - |
7.4724 | 270000 | 0.0007 | 0.0003 | 0.8253 | 0.8545 | 0.8424 |
7.4862 | 270500 | 0.0007 | - | - | - | - |
7.5001 | 271000 | 0.0007 | - | - | - | - |
7.5139 | 271500 | 0.0007 | - | - | - | - |
7.5277 | 272000 | 0.0007 | - | - | - | - |
7.5416 | 272500 | 0.0007 | - | - | - | - |
7.5554 | 273000 | 0.0007 | - | - | - | - |
7.5693 | 273500 | 0.0007 | - | - | - | - |
7.5831 | 274000 | 0.0007 | - | - | - | - |
7.5969 | 274500 | 0.0007 | - | - | - | - |
7.6108 | 275000 | 0.0007 | 0.0003 | 0.8233 | 0.8534 | 0.8427 |
7.6246 | 275500 | 0.0007 | - | - | - | - |
7.6384 | 276000 | 0.0007 | - | - | - | - |
7.6523 | 276500 | 0.0007 | - | - | - | - |
7.6661 | 277000 | 0.0007 | - | - | - | - |
7.6800 | 277500 | 0.0007 | - | - | - | - |
7.6938 | 278000 | 0.0007 | - | - | - | - |
7.7076 | 278500 | 0.0007 | - | - | - | - |
7.7215 | 279000 | 0.0007 | - | - | - | - |
7.7353 | 279500 | 0.0007 | - | - | - | - |
7.7491 | 280000 | 0.0007 | 0.0003 | 0.8242 | 0.8541 | 0.8428 |
7.7630 | 280500 | 0.0007 | - | - | - | - |
7.7768 | 281000 | 0.0007 | - | - | - | - |
7.7907 | 281500 | 0.0007 | - | - | - | - |
7.8045 | 282000 | 0.0007 | - | - | - | - |
7.8183 | 282500 | 0.0007 | - | - | - | - |
7.8322 | 283000 | 0.0007 | - | - | - | - |
7.8460 | 283500 | 0.0007 | - | - | - | - |
7.8599 | 284000 | 0.0007 | - | - | - | - |
7.8737 | 284500 | 0.0007 | - | - | - | - |
7.8875 | 285000 | 0.0007 | 0.0003 | 0.8245 | 0.8542 | 0.8434 |
7.9014 | 285500 | 0.0007 | - | - | - | - |
7.9152 | 286000 | 0.0007 | - | - | - | - |
7.9290 | 286500 | 0.0007 | - | - | - | - |
7.9429 | 287000 | 0.0007 | - | - | - | - |
7.9567 | 287500 | 0.0007 | - | - | - | - |
7.9706 | 288000 | 0.0007 | - | - | - | - |
7.9844 | 288500 | 0.0007 | - | - | - | - |
7.9982 | 289000 | 0.0007 | - | - | - | - |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 2,153
Model tree for jvanhoof/all-MiniLM-L6-multilingual-v2-en-es-pt-pt-br-v2
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on stsb multi mt ptself-reported0.809
- Spearman Cosine on stsb multi mt ptself-reported0.825
- Pearson Cosine on stsb multi mt enself-reported0.836
- Spearman Cosine on stsb multi mt enself-reported0.854
- Pearson Cosine on stsb multi mt esself-reported0.821
- Spearman Cosine on stsb multi mt esself-reported0.843