metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:18240762
- loss:MSELoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: Yeah, fire in the park, let's go!
sentences:
- 午前2時頃に音楽が止まり、それから熟睡。
- 彼はニンジンが好きではないので、食べなかった。
- 公園のライトアップ、ぜひ行こうね!
- source_sentence: Population is around 5.7 million people.
sentences:
- 人口は約570万人です。
- カンドンベの音楽はcuerdaと呼ばれるドラマーのグループによって演奏される。
- 'シノプシス: 2116年—日本政府はシビルシステムの無人ドローンロボットを問題のある国に輸出し始め、システムは世界中に広がっています。'
- source_sentence: >-
With EMUI 5.0, the Huawei Mate 9 becomes more intelligent and efficient
over time by understanding consumers’ behaviour patterns and ensures the
highest priority applications are given preference subject to system
resources.
sentences:
- 私も今はクルマを持っていません。
- ガジュマルの樹を見に行きたいです。
- >-
EMUI5.0では、『HUAWEI Mate
9』が消費者の行動パターンを理解し、時間をかけて知能と効率を上げ、優先順位の最も高いアプリをシステム消費源の対象に優先される事を保証します。
- source_sentence: >-
What are the differences between the environments and geographical
positions of the East and the West?
sentences:
- 環境と地理的位置に関して、東洋と西洋の相違点は何であろうか。
- >-
その ほか に , “心霊 手術 師 ” が おり , この 人 たち は“ 心霊 手術 ” なる もの
を 行ない ます。
- Numpy を import できない。
- source_sentence: Jesus Christ did surrender his life for the “sheep. ”
sentences:
- フィリポは読んでいる事柄が分かりますかと尋ねた。
- イエス ・ キリスト は ご自分 の 命 を「羊」の ため に 捨て まし た。
- 彼はこの金を中央政府には渡そうとしない。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsb multi mt en
type: stsb_multi_mt-en
metrics:
- type: pearson_cosine
value: 0.7901750255742193
name: Pearson Cosine
- type: spearman_cosine
value: 0.793832704547488
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: JSTS
type: JSTS
metrics:
- type: pearson_cosine
value: 0.8562933057524594
name: Pearson Cosine
- type: spearman_cosine
value: 0.8081744506827298
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Jesus Christ did surrender his life for the “sheep. ”',
'イエス \u200b ・ \u200b キリスト \u200b は \u200b ご自分 \u200b の \u200b 命 \u200b を「羊」の \u200b ため \u200b に \u200b 捨て \u200b まし \u200b た。',
'彼はこの金を中央政府には渡そうとしない。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
stsb_multi_mt-en
andJSTS
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | stsb_multi_mt-en | JSTS |
---|---|---|
pearson_cosine | 0.7902 | 0.8563 |
spearman_cosine | 0.7938 | 0.8082 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 18,240,762 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 15.99 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 21.59 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english non_english label Slow to Mars?
火星しばり?
[-0.1292940022648608, -0.1167307527589221, -0.008499974779641976, 0.04317784529767997, -0.06141806471633044, ...]
Sunset is nearly there.
サンクスはすぐそこだし。
[-0.1347740689698337, 0.053288680755846106, 0.014359346388162629, 0.0157641416547634, 0.0900218121125077, ...]
Why were these Christians put to death?
ハンガリー の 新聞「バシュ ・ ナーペ」は 次 の よう に 説明 し て い ます。「
[0.09746742956653999, -0.006846877375759926, -0.03973075126221857, 0.024986338940603363, -0.021140928354124164, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 184,251 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 16.16 tokens
- max: 116 tokens
- min: 4 tokens
- mean: 21.65 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english non_english label Back from donating?
ドーナツ回?
[-0.14056862827741115, -0.09391276023432168, 0.011405737148041988, 0.012085375305688852, -0.056379213184557624, ...]
134)Textbooks were also in short supply.
3)荷物の引き渡しも短時間にテキパキとされていました。
[0.04401202896633807, 0.07403046630916377, 0.11568493170920714, 0.047522982370575784, 0.1009405093401555, ...]
The COG investigators started the trial by providing dosages of crizotinib to their patients that were lower than those used in adults with NSCLC.
COG試験責任医師らは、NSCLCの成人患者で使用されている投与量より少ない量のcrizotinibを小児患者に提供することで試験を開始した。
[0.21476626448171793, -0.04704800523318936, 0.061019190603563075, 0.027317017405848458, -0.03788587912458321, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512gradient_accumulation_steps
: 2learning_rate
: 0.0003num_train_epochs
: 8warmup_ratio
: 0.15bf16
: Truedataloader_num_workers
: 8
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | stsb_multi_mt-en_spearman_cosine | JSTS_spearman_cosine |
---|---|---|---|---|---|
0.0281 | 500 | 0.0058 | - | - | - |
0.0561 | 1000 | 0.0051 | - | - | - |
0.0842 | 1500 | 0.0048 | - | - | - |
0.1123 | 2000 | 0.0046 | 0.0022 | 0.2515 | 0.2726 |
0.1403 | 2500 | 0.0044 | - | - | - |
0.1684 | 3000 | 0.0043 | - | - | - |
0.1965 | 3500 | 0.0041 | - | - | - |
0.2245 | 4000 | 0.004 | 0.0019 | 0.4462 | 0.4910 |
0.2526 | 4500 | 0.0039 | - | - | - |
0.2807 | 5000 | 0.0038 | - | - | - |
0.3088 | 5500 | 0.0037 | - | - | - |
0.3368 | 6000 | 0.0036 | 0.0017 | 0.5792 | 0.6327 |
0.3649 | 6500 | 0.0035 | - | - | - |
0.3930 | 7000 | 0.0034 | - | - | - |
0.4210 | 7500 | 0.0033 | - | - | - |
0.4491 | 8000 | 0.0032 | 0.0015 | 0.6501 | 0.7016 |
0.4772 | 8500 | 0.0032 | - | - | - |
0.5052 | 9000 | 0.0031 | - | - | - |
0.5333 | 9500 | 0.0031 | - | - | - |
0.5614 | 10000 | 0.0031 | 0.0015 | 0.6939 | 0.7373 |
0.5894 | 10500 | 0.003 | - | - | - |
0.6175 | 11000 | 0.003 | - | - | - |
0.6456 | 11500 | 0.003 | - | - | - |
0.6736 | 12000 | 0.0029 | 0.0014 | 0.7043 | 0.7573 |
0.7017 | 12500 | 0.0029 | - | - | - |
0.7298 | 13000 | 0.0029 | - | - | - |
0.7579 | 13500 | 0.0029 | - | - | - |
0.7859 | 14000 | 0.0029 | 0.0014 | 0.7221 | 0.7642 |
0.8140 | 14500 | 0.0028 | - | - | - |
0.8421 | 15000 | 0.0028 | - | - | - |
0.8701 | 15500 | 0.0028 | - | - | - |
0.8982 | 16000 | 0.0028 | 0.0013 | 0.7400 | 0.7763 |
0.9263 | 16500 | 0.0028 | - | - | - |
0.9543 | 17000 | 0.0028 | - | - | - |
0.9824 | 17500 | 0.0028 | - | - | - |
1.0104 | 18000 | 0.0027 | 0.0013 | 0.7459 | 0.7796 |
1.0385 | 18500 | 0.0027 | - | - | - |
1.0666 | 19000 | 0.0027 | - | - | - |
1.0946 | 19500 | 0.0027 | - | - | - |
1.1227 | 20000 | 0.0027 | 0.0013 | 0.7620 | 0.7853 |
1.1508 | 20500 | 0.0027 | - | - | - |
1.1789 | 21000 | 0.0027 | - | - | - |
1.2069 | 21500 | 0.0027 | - | - | - |
1.2350 | 22000 | 0.0027 | 0.0013 | 0.7669 | 0.7848 |
1.2631 | 22500 | 0.0027 | - | - | - |
1.2911 | 23000 | 0.0027 | - | - | - |
1.3192 | 23500 | 0.0026 | - | - | - |
1.3473 | 24000 | 0.0026 | 0.0013 | 0.7633 | 0.7866 |
1.3753 | 24500 | 0.0026 | - | - | - |
1.4034 | 25000 | 0.0026 | - | - | - |
1.4315 | 25500 | 0.0026 | - | - | - |
1.4595 | 26000 | 0.0026 | 0.0013 | 0.7751 | 0.7892 |
1.4876 | 26500 | 0.0026 | - | - | - |
1.5157 | 27000 | 0.0026 | - | - | - |
1.5437 | 27500 | 0.0026 | - | - | - |
1.5718 | 28000 | 0.0026 | 0.0012 | 0.7751 | 0.7951 |
1.5999 | 28500 | 0.0026 | - | - | - |
1.6280 | 29000 | 0.0026 | - | - | - |
1.6560 | 29500 | 0.0026 | - | - | - |
1.6841 | 30000 | 0.0026 | 0.0012 | 0.7765 | 0.7957 |
1.7122 | 30500 | 0.0026 | - | - | - |
1.7402 | 31000 | 0.0026 | - | - | - |
1.7683 | 31500 | 0.0026 | - | - | - |
1.7964 | 32000 | 0.0026 | 0.0012 | 0.7805 | 0.7957 |
1.8244 | 32500 | 0.0026 | - | - | - |
1.8525 | 33000 | 0.0026 | - | - | - |
1.8806 | 33500 | 0.0026 | - | - | - |
1.9086 | 34000 | 0.0026 | 0.0012 | 0.7797 | 0.7958 |
1.9367 | 34500 | 0.0026 | - | - | - |
1.9648 | 35000 | 0.0026 | - | - | - |
1.9928 | 35500 | 0.0026 | - | - | - |
2.0209 | 36000 | 0.0025 | 0.0012 | 0.7792 | 0.7943 |
2.0490 | 36500 | 0.0025 | - | - | - |
2.0770 | 37000 | 0.0025 | - | - | - |
2.1051 | 37500 | 0.0025 | - | - | - |
2.1332 | 38000 | 0.0025 | 0.0012 | 0.7831 | 0.7943 |
2.1612 | 38500 | 0.0025 | - | - | - |
2.1893 | 39000 | 0.0025 | - | - | - |
2.2174 | 39500 | 0.0025 | - | - | - |
2.2454 | 40000 | 0.0025 | 0.0012 | 0.7834 | 0.7973 |
2.2735 | 40500 | 0.0025 | - | - | - |
2.3016 | 41000 | 0.0025 | - | - | - |
2.3296 | 41500 | 0.0025 | - | - | - |
2.3577 | 42000 | 0.0025 | 0.0012 | 0.7860 | 0.7988 |
2.3858 | 42500 | 0.0025 | - | - | - |
2.4138 | 43000 | 0.0025 | - | - | - |
2.4419 | 43500 | 0.0025 | - | - | - |
2.4700 | 44000 | 0.0025 | 0.0012 | 0.7867 | 0.8006 |
2.4980 | 44500 | 0.0025 | - | - | - |
2.5261 | 45000 | 0.0025 | - | - | - |
2.5542 | 45500 | 0.0025 | - | - | - |
2.5823 | 46000 | 0.0025 | 0.0012 | 0.7870 | 0.8009 |
2.6103 | 46500 | 0.0025 | - | - | - |
2.6384 | 47000 | 0.0025 | - | - | - |
2.6665 | 47500 | 0.0025 | - | - | - |
2.6945 | 48000 | 0.0025 | 0.0012 | 0.7852 | 0.8019 |
2.7226 | 48500 | 0.0025 | - | - | - |
2.7507 | 49000 | 0.0025 | - | - | - |
2.7787 | 49500 | 0.0025 | - | - | - |
2.8068 | 50000 | 0.0025 | 0.0012 | 0.7863 | 0.8018 |
2.8349 | 50500 | 0.0025 | - | - | - |
2.8629 | 51000 | 0.0025 | - | - | - |
2.8910 | 51500 | 0.0025 | - | - | - |
2.9191 | 52000 | 0.0025 | 0.0012 | 0.7874 | 0.8000 |
2.9471 | 52500 | 0.0025 | - | - | - |
2.9752 | 53000 | 0.0025 | - | - | - |
3.0033 | 53500 | 0.0025 | - | - | - |
3.0313 | 54000 | 0.0025 | 0.0012 | 0.7875 | 0.8007 |
3.0594 | 54500 | 0.0025 | - | - | - |
3.0875 | 55000 | 0.0025 | - | - | - |
3.1155 | 55500 | 0.0025 | - | - | - |
3.1436 | 56000 | 0.0025 | 0.0012 | 0.7899 | 0.8021 |
3.1717 | 56500 | 0.0025 | - | - | - |
3.1997 | 57000 | 0.0025 | - | - | - |
3.2278 | 57500 | 0.0025 | - | - | - |
3.2559 | 58000 | 0.0025 | 0.0012 | 0.7914 | 0.8014 |
3.2839 | 58500 | 0.0025 | - | - | - |
3.3120 | 59000 | 0.0025 | - | - | - |
3.3401 | 59500 | 0.0025 | - | - | - |
3.3681 | 60000 | 0.0025 | 0.0012 | 0.7860 | 0.8029 |
3.3962 | 60500 | 0.0025 | - | - | - |
3.4243 | 61000 | 0.0025 | - | - | - |
3.4524 | 61500 | 0.0025 | - | - | - |
3.4804 | 62000 | 0.0025 | 0.0012 | 0.7886 | 0.8023 |
3.5085 | 62500 | 0.0025 | - | - | - |
3.5366 | 63000 | 0.0025 | - | - | - |
3.5646 | 63500 | 0.0025 | - | - | - |
3.5927 | 64000 | 0.0025 | 0.0012 | 0.7891 | 0.8045 |
3.6208 | 64500 | 0.0025 | - | - | - |
3.6488 | 65000 | 0.0025 | - | - | - |
3.6769 | 65500 | 0.0025 | - | - | - |
3.7050 | 66000 | 0.0025 | 0.0012 | 0.7892 | 0.8042 |
3.7330 | 66500 | 0.0025 | - | - | - |
3.7611 | 67000 | 0.0025 | - | - | - |
3.7892 | 67500 | 0.0025 | - | - | - |
3.8172 | 68000 | 0.0025 | 0.0012 | 0.7881 | 0.8042 |
3.8453 | 68500 | 0.0025 | - | - | - |
3.8734 | 69000 | 0.0025 | - | - | - |
3.9015 | 69500 | 0.0025 | - | - | - |
3.9295 | 70000 | 0.0025 | 0.0012 | 0.7905 | 0.8038 |
3.9576 | 70500 | 0.0025 | - | - | - |
3.9857 | 71000 | 0.0025 | - | - | - |
4.0137 | 71500 | 0.0025 | - | - | - |
4.0418 | 72000 | 0.0025 | 0.0012 | 0.7900 | 0.8052 |
4.0698 | 72500 | 0.0025 | - | - | - |
4.0979 | 73000 | 0.0025 | - | - | - |
4.1260 | 73500 | 0.0025 | - | - | - |
4.1540 | 74000 | 0.0025 | 0.0012 | 0.7904 | 0.8058 |
4.1821 | 74500 | 0.0025 | - | - | - |
4.2102 | 75000 | 0.0025 | - | - | - |
4.2382 | 75500 | 0.0025 | - | - | - |
4.2663 | 76000 | 0.0025 | 0.0012 | 0.7873 | 0.8049 |
4.2944 | 76500 | 0.0025 | - | - | - |
4.3225 | 77000 | 0.0025 | - | - | - |
4.3505 | 77500 | 0.0025 | - | - | - |
4.3786 | 78000 | 0.0025 | 0.0012 | 0.7908 | 0.8064 |
4.4067 | 78500 | 0.0025 | - | - | - |
4.4347 | 79000 | 0.0025 | - | - | - |
4.4628 | 79500 | 0.0025 | - | - | - |
4.4909 | 80000 | 0.0025 | 0.0012 | 0.7894 | 0.8050 |
4.5189 | 80500 | 0.0025 | - | - | - |
4.5470 | 81000 | 0.0025 | - | - | - |
4.5751 | 81500 | 0.0025 | - | - | - |
4.6031 | 82000 | 0.0025 | 0.0012 | 0.7917 | 0.8075 |
4.6312 | 82500 | 0.0025 | - | - | - |
4.6593 | 83000 | 0.0025 | - | - | - |
4.6873 | 83500 | 0.0025 | - | - | - |
4.7154 | 84000 | 0.0025 | 0.0012 | 0.7914 | 0.8059 |
4.7435 | 84500 | 0.0025 | - | - | - |
4.7715 | 85000 | 0.0025 | - | - | - |
4.7996 | 85500 | 0.0025 | - | - | - |
4.8277 | 86000 | 0.0025 | 0.0012 | 0.7895 | 0.8056 |
4.8558 | 86500 | 0.0025 | - | - | - |
4.8838 | 87000 | 0.0025 | - | - | - |
4.9119 | 87500 | 0.0025 | - | - | - |
4.9400 | 88000 | 0.0025 | 0.0012 | 0.7904 | 0.8059 |
4.9680 | 88500 | 0.0025 | - | - | - |
4.9961 | 89000 | 0.0025 | - | - | - |
5.0241 | 89500 | 0.0025 | - | - | - |
5.0522 | 90000 | 0.0025 | 0.0012 | 0.7907 | 0.8055 |
5.0803 | 90500 | 0.0025 | - | - | - |
5.1083 | 91000 | 0.0025 | - | - | - |
5.1364 | 91500 | 0.0025 | - | - | - |
5.1645 | 92000 | 0.0025 | 0.0012 | 0.7912 | 0.8056 |
5.1926 | 92500 | 0.0025 | - | - | - |
5.2206 | 93000 | 0.0025 | - | - | - |
5.2487 | 93500 | 0.0024 | - | - | - |
5.2768 | 94000 | 0.0025 | 0.0012 | 0.7913 | 0.8045 |
5.3048 | 94500 | 0.0025 | - | - | - |
5.3329 | 95000 | 0.0024 | - | - | - |
5.3610 | 95500 | 0.0024 | - | - | - |
5.3890 | 96000 | 0.0024 | 0.0012 | 0.7922 | 0.8056 |
5.4171 | 96500 | 0.0024 | - | - | - |
5.4452 | 97000 | 0.0024 | - | - | - |
5.4732 | 97500 | 0.0024 | - | - | - |
5.5013 | 98000 | 0.0024 | 0.0012 | 0.7909 | 0.8056 |
5.5294 | 98500 | 0.0024 | - | - | - |
5.5574 | 99000 | 0.0024 | - | - | - |
5.5855 | 99500 | 0.0024 | - | - | - |
5.6136 | 100000 | 0.0024 | 0.0012 | 0.7912 | 0.8075 |
5.6416 | 100500 | 0.0024 | - | - | - |
5.6697 | 101000 | 0.0024 | - | - | - |
5.6978 | 101500 | 0.0024 | - | - | - |
5.7259 | 102000 | 0.0024 | 0.0012 | 0.7921 | 0.8066 |
5.7539 | 102500 | 0.0024 | - | - | - |
5.7820 | 103000 | 0.0024 | - | - | - |
5.8101 | 103500 | 0.0024 | - | - | - |
5.8381 | 104000 | 0.0024 | 0.0012 | 0.7923 | 0.8068 |
5.8662 | 104500 | 0.0024 | - | - | - |
5.8943 | 105000 | 0.0024 | - | - | - |
5.9223 | 105500 | 0.0024 | - | - | - |
5.9504 | 106000 | 0.0024 | 0.0012 | 0.7941 | 0.8070 |
5.9785 | 106500 | 0.0024 | - | - | - |
6.0065 | 107000 | 0.0024 | - | - | - |
6.0346 | 107500 | 0.0024 | - | - | - |
6.0626 | 108000 | 0.0024 | 0.0012 | 0.7922 | 0.8078 |
6.0907 | 108500 | 0.0024 | - | - | - |
6.1188 | 109000 | 0.0024 | - | - | - |
6.1469 | 109500 | 0.0024 | - | - | - |
6.1749 | 110000 | 0.0024 | 0.0012 | 0.7922 | 0.8064 |
6.2030 | 110500 | 0.0024 | - | - | - |
6.2311 | 111000 | 0.0024 | - | - | - |
6.2591 | 111500 | 0.0024 | - | - | - |
6.2872 | 112000 | 0.0024 | 0.0012 | 0.7915 | 0.8069 |
6.3153 | 112500 | 0.0024 | - | - | - |
6.3433 | 113000 | 0.0024 | - | - | - |
6.3714 | 113500 | 0.0024 | - | - | - |
6.3995 | 114000 | 0.0024 | 0.0012 | 0.7921 | 0.8079 |
6.4275 | 114500 | 0.0024 | - | - | - |
6.4556 | 115000 | 0.0024 | - | - | - |
6.4837 | 115500 | 0.0024 | - | - | - |
6.5117 | 116000 | 0.0024 | 0.0012 | 0.7915 | 0.8071 |
6.5398 | 116500 | 0.0024 | - | - | - |
6.5679 | 117000 | 0.0024 | - | - | - |
6.5960 | 117500 | 0.0024 | - | - | - |
6.6240 | 118000 | 0.0024 | 0.0012 | 0.7943 | 0.8081 |
6.6521 | 118500 | 0.0024 | - | - | - |
6.6802 | 119000 | 0.0024 | - | - | - |
6.7082 | 119500 | 0.0024 | - | - | - |
6.7363 | 120000 | 0.0024 | 0.0012 | 0.7946 | 0.8079 |
6.7644 | 120500 | 0.0024 | - | - | - |
6.7924 | 121000 | 0.0024 | - | - | - |
6.8205 | 121500 | 0.0024 | - | - | - |
6.8486 | 122000 | 0.0024 | 0.0012 | 0.7919 | 0.8077 |
6.8766 | 122500 | 0.0024 | - | - | - |
6.9047 | 123000 | 0.0024 | - | - | - |
6.9328 | 123500 | 0.0024 | - | - | - |
6.9608 | 124000 | 0.0024 | 0.0012 | 0.7950 | 0.8087 |
6.9889 | 124500 | 0.0024 | - | - | - |
7.0170 | 125000 | 0.0024 | - | - | - |
7.0450 | 125500 | 0.0024 | - | - | - |
7.0731 | 126000 | 0.0024 | 0.0012 | 0.7927 | 0.8081 |
7.1012 | 126500 | 0.0024 | - | - | - |
7.1292 | 127000 | 0.0024 | - | - | - |
7.1573 | 127500 | 0.0024 | - | - | - |
7.1854 | 128000 | 0.0024 | 0.0012 | 0.7945 | 0.8082 |
7.2134 | 128500 | 0.0024 | - | - | - |
7.2415 | 129000 | 0.0024 | - | - | - |
7.2696 | 129500 | 0.0024 | - | - | - |
7.2976 | 130000 | 0.0024 | 0.0012 | 0.7927 | 0.8074 |
7.3257 | 130500 | 0.0024 | - | - | - |
7.3538 | 131000 | 0.0024 | - | - | - |
7.3818 | 131500 | 0.0024 | - | - | - |
7.4099 | 132000 | 0.0024 | 0.0012 | 0.7924 | 0.8077 |
7.4380 | 132500 | 0.0024 | - | - | - |
7.4661 | 133000 | 0.0024 | - | - | - |
7.4941 | 133500 | 0.0024 | - | - | - |
7.5222 | 134000 | 0.0024 | 0.0012 | 0.7929 | 0.8082 |
7.5503 | 134500 | 0.0024 | - | - | - |
7.5783 | 135000 | 0.0024 | - | - | - |
7.6064 | 135500 | 0.0024 | - | - | - |
7.6345 | 136000 | 0.0024 | 0.0012 | 0.7937 | 0.8080 |
7.6625 | 136500 | 0.0024 | - | - | - |
7.6906 | 137000 | 0.0024 | - | - | - |
7.7187 | 137500 | 0.0024 | - | - | - |
7.7467 | 138000 | 0.0024 | 0.0012 | 0.7941 | 0.8083 |
7.7748 | 138500 | 0.0024 | - | - | - |
7.8029 | 139000 | 0.0024 | - | - | - |
7.8309 | 139500 | 0.0024 | - | - | - |
7.8590 | 140000 | 0.0024 | 0.0012 | 0.7943 | 0.8082 |
7.8871 | 140500 | 0.0024 | - | - | - |
7.9151 | 141000 | 0.0024 | - | - | - |
7.9432 | 141500 | 0.0024 | - | - | - |
7.9713 | 142000 | 0.0024 | 0.0012 | 0.7938 | 0.8082 |
7.9994 | 142500 | 0.0024 | - | - | - |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}