retrained lander
Browse files- README.md +1 -1
- config.json +1 -1
- my_cool_model.zip +2 -2
- my_cool_model/data +22 -22
- my_cool_model/policy.optimizer.pth +1 -1
- my_cool_model/policy.pth +1 -1
- my_cool_model/system_info.txt +4 -4
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.57 +/- 20.72
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75f26cd8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75f26cd940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75f26cd9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75f26cda60>", "_build": "<function ActorCriticPolicy._build at 0x7f75f26cdaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f75f26cdb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75f26cdc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75f26cdca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75f26cdd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75f26cddc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75f26cde50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75f26cdee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f75f26c49f0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673589536091157144, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCvcz683gs96HH+Oof05jk0mZk+hHpFugAAgD8AAIA/TezEvZ3fHD+o8pq9LCG6viMRhr3JBUS8AAAAAAAAAAA9vqg+a/mQPb1EHLvWn9q5p3GPPjY2YDoAAIA/AACAP2a6YbyvllI/vqI1vRBSJb/gVPe8BQ/8vAAAAAAAAAAAU7NDvg8HWbwR4Zi8ssSPPKPQwD3olmm9AACAPwAAgD/60Ua+lGnMvKHukLwZ1iS7OfI4PjbA/zsAAIA/AACAPy0psD5Gbww/6mOVPuqNB7+5Ioc+Ki06vQAAAAAAAAAA4C5gPgH1ybyBup244kuNN21VL75XK8Q3AACAPwAAgD/GIew+B69XP6AMzj575ii/BNmyPkRcvLwAAAAAAAAAAC0IXT7pPxw96+wUuvr9vbj5N7Q+0MgEOAAAgD8AAIA/zWyPOttisT9WF9w8PXF0vllpMLwCZY69AAAAAAAAAACaGUW7sH6yP4W+jr3lIWS+ywnIuh4457wAAAAAAAAAAGZ4aL0Ubv+4rfWLtqJ3gDDXxhq8euurNQAAgD8AAIA/zWylOvddtT/S4wI+c8KIPvPMvrpAMO28AAAAAAAAAACgFUw+hTHwPEzYjLrW9lC5u1KFPo4q1zkAAIA/AACAPzNQLT0Gc74/ArITPrWnjL4Lh7m7om+AvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJnDrbh6YbkCUhpRSlIwBbJRL4owBdJRHQJsn2JKraM91fZQoaAZoCWgPQwg/H2XERcpwQJSGlFKUaBVL0WgWR0CbKSwUQCjldX2UKGgGaAloD0MIFvn1Q+zFY0CUhpRSlGgVTegDaBZHQJsqRkPMB6t1fZQoaAZoCWgPQwhUi4hisv5wQJSGlFKUaBVLymgWR0CbKwu0kWykdX2UKGgGaAloD0MIdk8eFmp4XECUhpRSlGgVTegDaBZHQJsrINsnAqN1fZQoaAZoCWgPQwgGvTeGgJptQJSGlFKUaBVLuGgWR0CbKzxqfvnbdX2UKGgGaAloD0MIB+v/HKaecECUhpRSlGgVS81oFkdAmyuBS9/SY3V9lChoBmgJaA9DCCeIug9AO2NAlIaUUpRoFU3oA2gWR0CbLYLronrqdX2UKGgGaAloD0MIuHaiJGSgckCUhpRSlGgVTQ0BaBZHQJsuerq+rU91fZQoaAZoCWgPQwgKKxVUlORwQJSGlFKUaBVLxGgWR0CbLntu1ndwdX2UKGgGaAloD0MITmGlgsrIcUCUhpRSlGgVTUUBaBZHQJsvDg62fCh1fZQoaAZoCWgPQwghA3l2+UtgQJSGlFKUaBVN6ANoFkdAmzDbDQ7cPHV9lChoBmgJaA9DCFG+oIXET3BAlIaUUpRoFU1qAWgWR0CbMVbFS88LdX2UKGgGaAloD0MI325JDlhScECUhpRSlGgVTQ0BaBZHQJsx5g7YChh1fZQoaAZoCWgPQwjMm8O1mpVxQJSGlFKUaBVL4GgWR0CbMhwzch1UdX2UKGgGaAloD0MIwZDVrV44cECUhpRSlGgVS+NoFkdAmzIjQVsUI3V9lChoBmgJaA9DCPt5U5GKB3JAlIaUUpRoFUvXaBZHQJsyMO5J9Rd1fZQoaAZoCWgPQwjLoUW2c19uQJSGlFKUaBVN7gJoFkdAmzJk5uIhyXV9lChoBmgJaA9DCLeYnxuaMW9AlIaUUpRoFUvEaBZHQJszV5xBE8d1fZQoaAZoCWgPQwhM4UGz69NwQJSGlFKUaBVNLQFoFkdAmzOHNs3yZ3V9lChoBmgJaA9DCLyS5Lm+gHBAlIaUUpRoFUvXaBZHQJs0mRPoFFF1fZQoaAZoCWgPQwgkfVpFfxVyQJSGlFKUaBVL2WgWR0CbNSBU70WedX2UKGgGaAloD0MIbJih8UTucECUhpRSlGgVS6hoFkdAmzXAn6VMVXV9lChoBmgJaA9DCEeRtYbSSm5AlIaUUpRoFUu8aBZHQJs13tjTa0x1fZQoaAZoCWgPQwgWNZiGIVlzQJSGlFKUaBVNIwFoFkdAmzagjQiRn3V9lChoBmgJaA9DCKG/0CPGaHFAlIaUUpRoFUuzaBZHQJs22qvNeMR1fZQoaAZoCWgPQwgLKT+p9qExQJSGlFKUaBVLr2gWR0CbNvaG5+YudX2UKGgGaAloD0MIdNNmnAbIcECUhpRSlGgVS8xoFkdAmzd5xrBTGnV9lChoBmgJaA9DCCrgnudPQXBAlIaUUpRoFUvaaBZHQJs3p0NjLB91fZQoaAZoCWgPQwgiiPNwgjpxQJSGlFKUaBVLumgWR0CbODz9jwx4dX2UKGgGaAloD0MIXTRkPArYc0CUhpRSlGgVTTEBaBZHQJs6TLeQ+2V1fZQoaAZoCWgPQwjFOeroOHxuQJSGlFKUaBVLtWgWR0CbOvrO7g89dX2UKGgGaAloD0MIhqsDIO4oTkCUhpRSlGgVS5poFkdAmztGvjfelHV9lChoBmgJaA9DCIFbd/MUHHBAlIaUUpRoFUv1aBZHQJs7fp3X7Lt1fZQoaAZoCWgPQwih2Aqals5xQJSGlFKUaBVLpWgWR0CbPEKVpsXSdX2UKGgGaAloD0MIoKaWrfVjY0CUhpRSlGgVTegDaBZHQJs9LgNwzch1fZQoaAZoCWgPQwhYN94dGcBuQJSGlFKUaBVNbgJoFkdAmz1QieNDMXV9lChoBmgJaA9DCPpH36RpVnBAlIaUUpRoFUu/aBZHQJs9V8Aq/dt1fZQoaAZoCWgPQwh/MPDcO/twQJSGlFKUaBVL5WgWR0CbPV8kleF+dX2UKGgGaAloD0MIiuWWVoMzdECUhpRSlGgVTQoBaBZHQJs9hB9kSVZ1fZQoaAZoCWgPQwjVBFH3AY9gQJSGlFKUaBVN6ANoFkdAmz4D7ALy+nV9lChoBmgJaA9DCFoSoKYWMnJAlIaUUpRoFU0HAWgWR0CbP9GXokiVdX2UKGgGaAloD0MI+prlstE3X0CUhpRSlGgVTegDaBZHQJtAGJfpljF1fZQoaAZoCWgPQwhO0vwxrW9uQJSGlFKUaBVNjwFoFkdAm0BZTQ3PzHV9lChoBmgJaA9DCBegbTXrcHBAlIaUUpRoFUvZaBZHQJtBLfNzKcN1fZQoaAZoCWgPQwhuhbAaSx5xQJSGlFKUaBVNBgFoFkdAm0GMvqTr3XV9lChoBmgJaA9DCNydtdsucHBAlIaUUpRoFUvoaBZHQJtBuAc1fmd1fZQoaAZoCWgPQwjv/+OESWhxQJSGlFKUaBVLr2gWR0CbQcFj/dZadX2UKGgGaAloD0MIZY16iIZRcECUhpRSlGgVS8RoFkdAm0JJjH4oJHV9lChoBmgJaA9DCH2R0JZzfXBAlIaUUpRoFUvNaBZHQJtCrCMxXXB1fZQoaAZoCWgPQwij5UAP9T1yQJSGlFKUaBVNIQFoFkdAm0Pk+1SflXV9lChoBmgJaA9DCOM3hZWKgXJAlIaUUpRoFU0FAWgWR0CbRLUFSsKcdX2UKGgGaAloD0MIjQkxl9QsakCUhpRSlGgVTTgBaBZHQJtFRb0OEuh1fZQoaAZoCWgPQwjKpIY2wANxQJSGlFKUaBVL1WgWR0CbRUwYcebNdX2UKGgGaAloD0MIKQRyiSOwb0CUhpRSlGgVS9doFkdAm0XoBJZntnV9lChoBmgJaA9DCI6tZwiHa3BAlIaUUpRoFUvkaBZHQJtF/HBDXvp1fZQoaAZoCWgPQwhJ9gg1AxtwQJSGlFKUaBVNnQFoFkdAm0YkoBq9G3V9lChoBmgJaA9DCP5+MVvyCnRAlIaUUpRoFUvKaBZHQJtG5p8F6iV1fZQoaAZoCWgPQwgF+kSe5A1yQJSGlFKUaBVL3WgWR0CbRwK/EfkndX2UKGgGaAloD0MImX6JeKsXc0CUhpRSlGgVS9JoFkdAm0dVWsA/93V9lChoBmgJaA9DCFoqb0c4yTjAlIaUUpRoFUulaBZHQJtJHvXsgMd1fZQoaAZoCWgPQwgsZ++MtuBxQJSGlFKUaBVL8mgWR0CbSSiX6ZYxdX2UKGgGaAloD0MIbtqM01Bkc0CUhpRSlGgVS+9oFkdAm0pcaGYa53V9lChoBmgJaA9DCLHh6ZXyEnNAlIaUUpRoFUvDaBZHQJtKi4z7/GV1fZQoaAZoCWgPQwin6bMD7i9xQJSGlFKUaBVLsmgWR0CbSrW7OE/TdX2UKGgGaAloD0MIgQhx5WzqcUCUhpRSlGgVS7VoFkdAm0sEYXO4X3V9lChoBmgJaA9DCNqoTgfyvXBAlIaUUpRoFUulaBZHQJtLZUKiPAB1fZQoaAZoCWgPQwi6u86GfHBxQJSGlFKUaBVL9mgWR0CbS/XSBshxdX2UKGgGaAloD0MI9MMI4VGJcECUhpRSlGgVS8hoFkdAm0xwZbY9PnV9lChoBmgJaA9DCKBP5EmS8HFAlIaUUpRoFUv7aBZHQJtMwwIt16p1fZQoaAZoCWgPQwg7U+i8xtZhQJSGlFKUaBVN6ANoFkdAm07Ocx0uDnV9lChoBmgJaA9DCIiDhChfqGxAlIaUUpRoFUvOaBZHQJtO89KVY6p1fZQoaAZoCWgPQwgGhNbDlxtBQJSGlFKUaBVLtGgWR0CbT3qVhTfjdX2UKGgGaAloD0MI8fPfg9eEbkCUhpRSlGgVS6xoFkdAm0+hsZYPoXV9lChoBmgJaA9DCMXjolrEu29AlIaUUpRoFUvGaBZHQJtQNoJzDGd1fZQoaAZoCWgPQwgMrU7OkAtxQJSGlFKUaBVNDQFoFkdAm1DdZeRgZ3V9lChoBmgJaA9DCBDrjVphXm9AlIaUUpRoFUu/aBZHQJtQ7QokRjB1fZQoaAZoCWgPQwjc1avI6K9wQJSGlFKUaBVLtGgWR0CbUTYg7o0RdX2UKGgGaAloD0MIK4VALnF+cECUhpRSlGgVS7poFkdAm1JF0tAcDXV9lChoBmgJaA9DCFzmdFlMDXFAlIaUUpRoFUvRaBZHQJtSmwIMSbp1fZQoaAZoCWgPQwjrp/+seTxmQJSGlFKUaBVN6ANoFkdAm1Kyb2Dg63V9lChoBmgJaA9DCM6njlUKNHFAlIaUUpRoFU0QAWgWR0CbUuiPQv6CdX2UKGgGaAloD0MIQ8U4fxMCcUCUhpRSlGgVS9RoFkdAm1Xdnwob43V9lChoBmgJaA9DCOF86lglGnBAlIaUUpRoFUu0aBZHQJtWbw1BMSN1fZQoaAZoCWgPQwj7ljldFptxQJSGlFKUaBVLuGgWR0CbVoFs54nndX2UKGgGaAloD0MIaXIxBtbrbkCUhpRSlGgVS9loFkdAm1bftdAxBXV9lChoBmgJaA9DCA5ORL82GHJAlIaUUpRoFUv5aBZHQJtXQqiGnGd1fZQoaAZoCWgPQwivRKD6h3VtQJSGlFKUaBVNFQFoFkdAm1dzBAOav3V9lChoBmgJaA9DCLmOccXFL29AlIaUUpRoFU0qAmgWR0CbV4w4sEq2dX2UKGgGaAloD0MIq3XicrwbUUCUhpRSlGgVS7VoFkdAm1hXW4EwFnV9lChoBmgJaA9DCAAapUu/HXBAlIaUUpRoFUvJaBZHQJtYhRQ79yd1fZQoaAZoCWgPQwgPXyaKkOlhQJSGlFKUaBVN6ANoFkdAm1lv336AOXV9lChoBmgJaA9DCE2/RLz1JGtAlIaUUpRoFU09AWgWR0CbXG/PgNwzdX2UKGgGaAloD0MIHVpkO9+7bECUhpRSlGgVS8VoFkdAm1yJJ04io3V9lChoBmgJaA9DCEUuOIM/um9AlIaUUpRoFUvJaBZHQJtcuj8DSw51fZQoaAZoCWgPQwiBlxk2ypxxQJSGlFKUaBVL3WgWR0CbXMLf1pTNdX2UKGgGaAloD0MIT+eKUkLOb0CUhpRSlGgVTZUBaBZHQJtdtOoHcDd1fZQoaAZoCWgPQwgXKCmwgAhuQJSGlFKUaBVLv2gWR0CbXm73wkPddX2UKGgGaAloD0MIyXGndDABb0CUhpRSlGgVS8hoFkdAm16HzMA3k3V9lChoBmgJaA9DCO6wicwc+HBAlIaUUpRoFUvpaBZHQJtenw2ETQF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f84587bfe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84587bfeb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84587bff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84587cc040>", "_build": "<function ActorCriticPolicy._build at 0x7f84587cc0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f84587cc160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84587cc1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84587cc280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f84587cc310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84587cc3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84587cc430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84587cc4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f84587c8c80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673933699538720020, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoiCr78+aQ/oY0AvyoNC7+BLxe+rccgvgAAAAAAAAAAM+d+PS3Buz5iJRy80aCmvts6XT1TqDW8AAAAAAAAAADmYe09H/iYP4zSBT9JLRi/4Qo1Pp31rz4AAAAAAAAAAE2C9b1pq4A/Vd50vbVLJL/aewW+n24MPgAAAAAAAAAAQN2FPS21Fz7YmSa+LkmovjeEOL2NzXS6AAAAAAAAAAAzrGi9ZUk8P3dfzLwd9Qm/qi0zvdKktzwAAAAAAAAAANrlor220zs9jHoDPj/xc756W+k8zqehPAAAAAAAAAAAjUSRvaQLb7sk/rQ8sEhqO2jdprwSBWo8AACAPwAAgD+a4C694diKuobRBzu82cqxh0LeuIOg/LMAAIA/AACAP1r4Rr4MHOI+uj1EPtUf6L7C2Ja9vnHnPQAAAAAAAAAAZhKouziy17vOrau95A1Mvl5ApruK738+AACAPwAAgD/za0y+2XhEP0ddJz0fUwe/3X9TvpCVGj4AAAAAAAAAAKC0cL5r3gg/0/S7Pg6C+76ECWu9gjaAPgAAAAAAAAAAs/PjPb6klj26YlS+q3STvjZWGL0Npzq9AAAAAAAAAABmkr+9k4m2PzO0+L5HUkK+XiWvvbsoWL4AAAAAAAAAADMlvz0SzII8nJYCvjINZ77+Quu8aHPpuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXvzG2YzcECUhpRSlIwBbJRL/4wBdJRHQKT0qPV/c351fZQoaAZoCWgPQwgBa9WuybJxQJSGlFKUaBVLtmgWR0Ck9K7wKBuodX2UKGgGaAloD0MI7X4V4Pt1ckCUhpRSlGgVS9BoFkdApPTjklu3t3V9lChoBmgJaA9DCOtU+Z6ReXJAlIaUUpRoFUvTaBZHQKT07lnyup11fZQoaAZoCWgPQwi7e4DuS6dvQJSGlFKUaBVLz2gWR0Ck9PWf029+dX2UKGgGaAloD0MI9iaG5OSOb0CUhpRSlGgVS9toFkdApPUbb1yvLXV9lChoBmgJaA9DCMh6avVVJXNAlIaUUpRoFUvGaBZHQKT1LUWl/H51fZQoaAZoCWgPQwh4KXXJOMZxQJSGlFKUaBVL7WgWR0Ck9ViHIp6QdX2UKGgGaAloD0MIpFAWvn5ocUCUhpRSlGgVS9VoFkdApPVpO8Cgb3V9lChoBmgJaA9DCDGyZI4lsnJAlIaUUpRoFUvlaBZHQKT1hvJA+px1fZQoaAZoCWgPQwjY9KCg1GNyQJSGlFKUaBVLxWgWR0Ck9ZOZ9d/sdX2UKGgGaAloD0MI4KC9+njKcECUhpRSlGgVS75oFkdApPWk01qFiHV9lChoBmgJaA9DCLFqEOa2FXFAlIaUUpRoFUvCaBZHQKT1o90Rvm51fZQoaAZoCWgPQwjAP6VKVHVzQJSGlFKUaBVL82gWR0Ck9bDXe3x4dX2UKGgGaAloD0MICTNt/8ojcECUhpRSlGgVS95oFkdApPXYZjx0+3V9lChoBmgJaA9DCA8O9iaGPXJAlIaUUpRoFUvcaBZHQKT2Fj5Kvmp1fZQoaAZoCWgPQwi8y0V854JzQJSGlFKUaBVLyGgWR0Ck9lgSWZ7YdX2UKGgGaAloD0MIOUcdHVefbUCUhpRSlGgVS9FoFkdApPZlqDbrT3V9lChoBmgJaA9DCIxkj1Azl29AlIaUUpRoFUu9aBZHQKT2ey1uzhR1fZQoaAZoCWgPQwjuQQjIF8tyQJSGlFKUaBVLwGgWR0Ck9oe/5+H8dX2UKGgGaAloD0MIgLvs110rcUCUhpRSlGgVS89oFkdApPaXQrtmc3V9lChoBmgJaA9DCPp8lBEXq3NAlIaUUpRoFUveaBZHQKT27O9FnZl1fZQoaAZoCWgPQwhAhLhy9gh0QJSGlFKUaBVL12gWR0Ck9u+b3Gn5dX2UKGgGaAloD0MI5ZoCmd3gc0CUhpRSlGgVS91oFkdApPcs01qFiHV9lChoBmgJaA9DCPUPIhkyh3JAlIaUUpRoFUvGaBZHQKT3NkRzzVd1fZQoaAZoCWgPQwinA1lP7ZtwQJSGlFKUaBVLvWgWR0Ck90RKHwgDdX2UKGgGaAloD0MIcCcR4d+eckCUhpRSlGgVS9JoFkdApPdG3fAKv3V9lChoBmgJaA9DCJNwIY+gnXBAlIaUUpRoFUvgaBZHQKT3SjTKDCh1fZQoaAZoCWgPQwhhUKbR5OpuQJSGlFKUaBVL1GgWR0Ck92bjLjgidX2UKGgGaAloD0MIJTs2ArH9cUCUhpRSlGgVS+FoFkdApPeA7kn1F3V9lChoBmgJaA9DCItPATBeonFAlIaUUpRoFUvbaBZHQKT3qxASnLt1fZQoaAZoCWgPQwiASpUou9NxQJSGlFKUaBVLzmgWR0Ck989h7VridX2UKGgGaAloD0MICHb8FwgockCUhpRSlGgVS7FoFkdApPfU4DLbH3V9lChoBmgJaA9DCB0EHa2q7HFAlIaUUpRoFUvFaBZHQKT4KXb/Ot51fZQoaAZoCWgPQwh6ceKr3U1xQJSGlFKUaBVLwWgWR0Ck+EB+vyLAdX2UKGgGaAloD0MIgjgPJ/Cvc0CUhpRSlGgVS9poFkdApPhDnzQNTnV9lChoBmgJaA9DCAoS293D8nBAlIaUUpRoFUu9aBZHQKT4izsQd0d1fZQoaAZoCWgPQwgaahSSjOJwQJSGlFKUaBVLxmgWR0Ck+KGcnVoYdX2UKGgGaAloD0MI3o5wWnBFckCUhpRSlGgVS/toFkdApPirNMXaanV9lChoBmgJaA9DCEYMO4zJym5AlIaUUpRoFUu+aBZHQKT4zwZwXIl1fZQoaAZoCWgPQwhKQEzCBQhvQJSGlFKUaBVL0mgWR0Ck+PN3np0PdX2UKGgGaAloD0MItjAL7dyJcUCUhpRSlGgVS8toFkdApPj3Nu+AVnV9lChoBmgJaA9DCMwnK4Yr329AlIaUUpRoFUvHaBZHQKT5EIF/x2B1fZQoaAZoCWgPQwgu46YGWqpzQJSGlFKUaBVL32gWR0Ck+SIMz/IbdX2UKGgGaAloD0MI8fCeA8s5ckCUhpRSlGgVS+poFkdApPk63gDRt3V9lChoBmgJaA9DCFyQLcsXd3FAlIaUUpRoFUvdaBZHQKT5WxASnLt1fZQoaAZoCWgPQwirQC0GjxtxQJSGlFKUaBVL1WgWR0Ck+XLYf4h2dX2UKGgGaAloD0MIYORlTWz/cUCUhpRSlGgVS8JoFkdApPl2ZssQNHV9lChoBmgJaA9DCOy/zk3boHFAlIaUUpRoFUvaaBZHQKT5pQkX1rZ1fZQoaAZoCWgPQwgAV7JjI0d0QJSGlFKUaBVL02gWR0Ck+epbD/EPdX2UKGgGaAloD0MI8Z9uoMBlcUCUhpRSlGgVS95oFkdApPobrZ8KHHV9lChoBmgJaA9DCJf/kH67hnNAlIaUUpRoFUu0aBZHQKT6In+hoM91fZQoaAZoCWgPQwhFf2jmSU9yQJSGlFKUaBVL6WgWR0Ck+jNUXHindX2UKGgGaAloD0MI7Ulgc47rb0CUhpRSlGgVS8FoFkdApPpMA1ejVXV9lChoBmgJaA9DCC7L12W4HXFAlIaUUpRoFUvYaBZHQKT6Xdt2s7x1fZQoaAZoCWgPQwh0forjAKxxQJSGlFKUaBVLwWgWR0Ck+nGEf1YhdX2UKGgGaAloD0MI9wZfmAwHcECUhpRSlGgVS9BoFkdApPq3nIQvpXV9lChoBmgJaA9DCFyrPewFSm5AlIaUUpRoFUvTaBZHQKT6wg/1QIl1fZQoaAZoCWgPQwheRxyywbZyQJSGlFKUaBVLwWgWR0Ck+sfJ/5LzdX2UKGgGaAloD0MInZs24zTgb0CUhpRSlGgVS81oFkdApPr6AYpDu3V9lChoBmgJaA9DCDY9KCiFBHRAlIaUUpRoFUvBaBZHQKT7Ad6sySF1fZQoaAZoCWgPQwisH5vkR3ZxQJSGlFKUaBVLwWgWR0Ck+yAxagVXdX2UKGgGaAloD0MIdVsiF9wJckCUhpRSlGgVS/loFkdApPsu+RHPNXV9lChoBmgJaA9DCGniHeDJ2HBAlIaUUpRoFUvnaBZHQKT7bDXOGCZ1fZQoaAZoCWgPQwjerMH7qsNvQJSGlFKUaBVL1WgWR0Ck+3e9Ba9sdX2UKGgGaAloD0MIzv3V4/5ccECUhpRSlGgVS8hoFkdApPuflQuVX3V9lChoBmgJaA9DCEHYKVaNUXFAlIaUUpRoFUvDaBZHQKT7ycABDG91fZQoaAZoCWgPQwhq+1dWGk1xQJSGlFKUaBVLx2gWR0Ck++hdt2s8dX2UKGgGaAloD0MIeOxnsZS/ckCUhpRSlGgVS8NoFkdApPv4Enssx3V9lChoBmgJaA9DCIarAyDuLnFAlIaUUpRoFUvlaBZHQKT8HgsK9f11fZQoaAZoCWgPQwiad5yiYxlzQJSGlFKUaBVL02gWR0Ck/C9uYQardX2UKGgGaAloD0MI0A8jhEcScUCUhpRSlGgVS7RoFkdApPxYk5ZKWnV9lChoBmgJaA9DCNf6IqFt4XBAlIaUUpRoFUu4aBZHQKT8V/9YOlR1fZQoaAZoCWgPQwh1WOGWT/RxQJSGlFKUaBVLuWgWR0Ck/GwDNhVmdX2UKGgGaAloD0MI+64I/ne7cUCUhpRSlGgVS+VoFkdApPx30dzXBnV9lChoBmgJaA9DCNaryOjAVnFAlIaUUpRoFUvOaBZHQKT80e/5+H91fZQoaAZoCWgPQwj4UnjQLBhwQJSGlFKUaBVL1mgWR0Ck/NvcrRShdX2UKGgGaAloD0MIt3wkJb2kb0CUhpRSlGgVS81oFkdApPzsMd92HXV9lChoBmgJaA9DCBb7y+5Jgm9AlIaUUpRoFUvTaBZHQKT9BtZV4ot1fZQoaAZoCWgPQwjCwd7EUKJxQJSGlFKUaBVLu2gWR0Ck/RuMVDa5dX2UKGgGaAloD0MIwCK/fkhZckCUhpRSlGgVS8loFkdApP0tkUbkwXV9lChoBmgJaA9DCLx1/u2yG3FAlIaUUpRoFUvZaBZHQKT9h/ustCl1fZQoaAZoCWgPQwjM1CR4w35wQJSGlFKUaBVLxWgWR0Ck/a/wy6+WdX2UKGgGaAloD0MI5sqg2mCicECUhpRSlGgVS99oFkdApP28YZVGTnV9lChoBmgJaA9DCJnxttJrxG9AlIaUUpRoFUvVaBZHQKT9w//vOQh1fZQoaAZoCWgPQwgtXFZhMw1zQJSGlFKUaBVLxGgWR0Ck/f3yqdYodX2UKGgGaAloD0MIw0ZZvxlgckCUhpRSlGgVS91oFkdApP4F0DEFXHV9lChoBmgJaA9DCEonEkx123BAlIaUUpRoFUvWaBZHQKT+B3Zf2K51fZQoaAZoCWgPQwh2iH/YUgRvQJSGlFKUaBVLwmgWR0Ck/gxASnLrdX2UKGgGaAloD0MIA7LXu78+ckCUhpRSlGgVS99oFkdApP43E87p3XV9lChoBmgJaA9DCGtGBrmLWXBAlIaUUpRoFUviaBZHQKT+VcmjTKF1fZQoaAZoCWgPQwgHsTOFjudyQJSGlFKUaBVLyWgWR0Ck/oZ8a4tpdX2UKGgGaAloD0MITP+SVGYOcECUhpRSlGgVS9FoFkdApP6PCO3lS3V9lChoBmgJaA9DCMVwdQDE5XFAlIaUUpRoFUvHaBZHQKT+lRnezld1fZQoaAZoCWgPQwghkbbxpzdtQJSGlFKUaBVLv2gWR0Ck/sm3F1jidX2UKGgGaAloD0MIfjhIiDJ6cECUhpRSlGgVS9NoFkdApP7LLwF1S3V9lChoBmgJaA9DCNBgU+dRlm9AlIaUUpRoFUvTaBZHQKT+4A7xNIt1fZQoaAZoCWgPQwg+y/PgbopwQJSGlFKUaBVLymgWR0Ck/zAMlTm5dX2UKGgGaAloD0MIw9hCkMMtcUCUhpRSlGgVS7loFkdApP878HfMwHV9lChoBmgJaA9DCHB87Zmlj3FAlIaUUpRoFUvAaBZHQKT/PyzXz191ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
my_cool_model.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc3e52db37d1b0c3147c3dd07ad09e4101691cb345acb8010010d6e25505e1a0
|
3 |
+
size 147314
|
my_cool_model/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
@@ -43,25 +43,25 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,13 +70,13 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
@@ -87,7 +87,7 @@
|
|
87 |
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f84587bfe20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84587bfeb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84587bff40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84587cc040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f84587cc0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f84587cc160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84587cc1f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84587cc280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f84587cc310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84587cc3a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84587cc430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84587cc4c0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f84587c8c80>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1673933699538720020,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoiCr78+aQ/oY0AvyoNC7+BLxe+rccgvgAAAAAAAAAAM+d+PS3Buz5iJRy80aCmvts6XT1TqDW8AAAAAAAAAADmYe09H/iYP4zSBT9JLRi/4Qo1Pp31rz4AAAAAAAAAAE2C9b1pq4A/Vd50vbVLJL/aewW+n24MPgAAAAAAAAAAQN2FPS21Fz7YmSa+LkmovjeEOL2NzXS6AAAAAAAAAAAzrGi9ZUk8P3dfzLwd9Qm/qi0zvdKktzwAAAAAAAAAANrlor220zs9jHoDPj/xc756W+k8zqehPAAAAAAAAAAAjUSRvaQLb7sk/rQ8sEhqO2jdprwSBWo8AACAPwAAgD+a4C694diKuobRBzu82cqxh0LeuIOg/LMAAIA/AACAP1r4Rr4MHOI+uj1EPtUf6L7C2Ja9vnHnPQAAAAAAAAAAZhKouziy17vOrau95A1Mvl5ApruK738+AACAPwAAgD/za0y+2XhEP0ddJz0fUwe/3X9TvpCVGj4AAAAAAAAAAKC0cL5r3gg/0/S7Pg6C+76ECWu9gjaAPgAAAAAAAAAAs/PjPb6klj26YlS+q3STvjZWGL0Npzq9AAAAAAAAAABmkr+9k4m2PzO0+L5HUkK+XiWvvbsoWL4AAAAAAAAAADMlvz0SzII8nJYCvjINZ77+Quu8aHPpuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXvzG2YzcECUhpRSlIwBbJRL/4wBdJRHQKT0qPV/c351fZQoaAZoCWgPQwgBa9WuybJxQJSGlFKUaBVLtmgWR0Ck9K7wKBuodX2UKGgGaAloD0MI7X4V4Pt1ckCUhpRSlGgVS9BoFkdApPTjklu3t3V9lChoBmgJaA9DCOtU+Z6ReXJAlIaUUpRoFUvTaBZHQKT07lnyup11fZQoaAZoCWgPQwi7e4DuS6dvQJSGlFKUaBVLz2gWR0Ck9PWf029+dX2UKGgGaAloD0MI9iaG5OSOb0CUhpRSlGgVS9toFkdApPUbb1yvLXV9lChoBmgJaA9DCMh6avVVJXNAlIaUUpRoFUvGaBZHQKT1LUWl/H51fZQoaAZoCWgPQwh4KXXJOMZxQJSGlFKUaBVL7WgWR0Ck9ViHIp6QdX2UKGgGaAloD0MIpFAWvn5ocUCUhpRSlGgVS9VoFkdApPVpO8Cgb3V9lChoBmgJaA9DCDGyZI4lsnJAlIaUUpRoFUvlaBZHQKT1hvJA+px1fZQoaAZoCWgPQwjY9KCg1GNyQJSGlFKUaBVLxWgWR0Ck9ZOZ9d/sdX2UKGgGaAloD0MI4KC9+njKcECUhpRSlGgVS75oFkdApPWk01qFiHV9lChoBmgJaA9DCLFqEOa2FXFAlIaUUpRoFUvCaBZHQKT1o90Rvm51fZQoaAZoCWgPQwjAP6VKVHVzQJSGlFKUaBVL82gWR0Ck9bDXe3x4dX2UKGgGaAloD0MICTNt/8ojcECUhpRSlGgVS95oFkdApPXYZjx0+3V9lChoBmgJaA9DCA8O9iaGPXJAlIaUUpRoFUvcaBZHQKT2Fj5Kvmp1fZQoaAZoCWgPQwi8y0V854JzQJSGlFKUaBVLyGgWR0Ck9lgSWZ7YdX2UKGgGaAloD0MIOUcdHVefbUCUhpRSlGgVS9FoFkdApPZlqDbrT3V9lChoBmgJaA9DCIxkj1Azl29AlIaUUpRoFUu9aBZHQKT2ey1uzhR1fZQoaAZoCWgPQwjuQQjIF8tyQJSGlFKUaBVLwGgWR0Ck9oe/5+H8dX2UKGgGaAloD0MIgLvs110rcUCUhpRSlGgVS89oFkdApPaXQrtmc3V9lChoBmgJaA9DCPp8lBEXq3NAlIaUUpRoFUveaBZHQKT27O9FnZl1fZQoaAZoCWgPQwhAhLhy9gh0QJSGlFKUaBVL12gWR0Ck9u+b3Gn5dX2UKGgGaAloD0MI5ZoCmd3gc0CUhpRSlGgVS91oFkdApPcs01qFiHV9lChoBmgJaA9DCPUPIhkyh3JAlIaUUpRoFUvGaBZHQKT3NkRzzVd1fZQoaAZoCWgPQwinA1lP7ZtwQJSGlFKUaBVLvWgWR0Ck90RKHwgDdX2UKGgGaAloD0MIcCcR4d+eckCUhpRSlGgVS9JoFkdApPdG3fAKv3V9lChoBmgJaA9DCJNwIY+gnXBAlIaUUpRoFUvgaBZHQKT3SjTKDCh1fZQoaAZoCWgPQwhhUKbR5OpuQJSGlFKUaBVL1GgWR0Ck92bjLjgidX2UKGgGaAloD0MIJTs2ArH9cUCUhpRSlGgVS+FoFkdApPeA7kn1F3V9lChoBmgJaA9DCItPATBeonFAlIaUUpRoFUvbaBZHQKT3qxASnLt1fZQoaAZoCWgPQwiASpUou9NxQJSGlFKUaBVLzmgWR0Ck989h7VridX2UKGgGaAloD0MICHb8FwgockCUhpRSlGgVS7FoFkdApPfU4DLbH3V9lChoBmgJaA9DCB0EHa2q7HFAlIaUUpRoFUvFaBZHQKT4KXb/Ot51fZQoaAZoCWgPQwh6ceKr3U1xQJSGlFKUaBVLwWgWR0Ck+EB+vyLAdX2UKGgGaAloD0MIgjgPJ/Cvc0CUhpRSlGgVS9poFkdApPhDnzQNTnV9lChoBmgJaA9DCAoS293D8nBAlIaUUpRoFUu9aBZHQKT4izsQd0d1fZQoaAZoCWgPQwgaahSSjOJwQJSGlFKUaBVLxmgWR0Ck+KGcnVoYdX2UKGgGaAloD0MI3o5wWnBFckCUhpRSlGgVS/toFkdApPirNMXaanV9lChoBmgJaA9DCEYMO4zJym5AlIaUUpRoFUu+aBZHQKT4zwZwXIl1fZQoaAZoCWgPQwhKQEzCBQhvQJSGlFKUaBVL0mgWR0Ck+PN3np0PdX2UKGgGaAloD0MItjAL7dyJcUCUhpRSlGgVS8toFkdApPj3Nu+AVnV9lChoBmgJaA9DCMwnK4Yr329AlIaUUpRoFUvHaBZHQKT5EIF/x2B1fZQoaAZoCWgPQwgu46YGWqpzQJSGlFKUaBVL32gWR0Ck+SIMz/IbdX2UKGgGaAloD0MI8fCeA8s5ckCUhpRSlGgVS+poFkdApPk63gDRt3V9lChoBmgJaA9DCFyQLcsXd3FAlIaUUpRoFUvdaBZHQKT5WxASnLt1fZQoaAZoCWgPQwirQC0GjxtxQJSGlFKUaBVL1WgWR0Ck+XLYf4h2dX2UKGgGaAloD0MIYORlTWz/cUCUhpRSlGgVS8JoFkdApPl2ZssQNHV9lChoBmgJaA9DCOy/zk3boHFAlIaUUpRoFUvaaBZHQKT5pQkX1rZ1fZQoaAZoCWgPQwgAV7JjI0d0QJSGlFKUaBVL02gWR0Ck+epbD/EPdX2UKGgGaAloD0MI8Z9uoMBlcUCUhpRSlGgVS95oFkdApPobrZ8KHHV9lChoBmgJaA9DCJf/kH67hnNAlIaUUpRoFUu0aBZHQKT6In+hoM91fZQoaAZoCWgPQwhFf2jmSU9yQJSGlFKUaBVL6WgWR0Ck+jNUXHindX2UKGgGaAloD0MI7Ulgc47rb0CUhpRSlGgVS8FoFkdApPpMA1ejVXV9lChoBmgJaA9DCC7L12W4HXFAlIaUUpRoFUvYaBZHQKT6Xdt2s7x1fZQoaAZoCWgPQwh0forjAKxxQJSGlFKUaBVLwWgWR0Ck+nGEf1YhdX2UKGgGaAloD0MI9wZfmAwHcECUhpRSlGgVS9BoFkdApPq3nIQvpXV9lChoBmgJaA9DCFyrPewFSm5AlIaUUpRoFUvTaBZHQKT6wg/1QIl1fZQoaAZoCWgPQwheRxyywbZyQJSGlFKUaBVLwWgWR0Ck+sfJ/5LzdX2UKGgGaAloD0MInZs24zTgb0CUhpRSlGgVS81oFkdApPr6AYpDu3V9lChoBmgJaA9DCDY9KCiFBHRAlIaUUpRoFUvBaBZHQKT7Ad6sySF1fZQoaAZoCWgPQwisH5vkR3ZxQJSGlFKUaBVLwWgWR0Ck+yAxagVXdX2UKGgGaAloD0MIdVsiF9wJckCUhpRSlGgVS/loFkdApPsu+RHPNXV9lChoBmgJaA9DCGniHeDJ2HBAlIaUUpRoFUvnaBZHQKT7bDXOGCZ1fZQoaAZoCWgPQwjerMH7qsNvQJSGlFKUaBVL1WgWR0Ck+3e9Ba9sdX2UKGgGaAloD0MIzv3V4/5ccECUhpRSlGgVS8hoFkdApPuflQuVX3V9lChoBmgJaA9DCEHYKVaNUXFAlIaUUpRoFUvDaBZHQKT7ycABDG91fZQoaAZoCWgPQwhq+1dWGk1xQJSGlFKUaBVLx2gWR0Ck++hdt2s8dX2UKGgGaAloD0MIeOxnsZS/ckCUhpRSlGgVS8NoFkdApPv4Enssx3V9lChoBmgJaA9DCIarAyDuLnFAlIaUUpRoFUvlaBZHQKT8HgsK9f11fZQoaAZoCWgPQwiad5yiYxlzQJSGlFKUaBVL02gWR0Ck/C9uYQardX2UKGgGaAloD0MI0A8jhEcScUCUhpRSlGgVS7RoFkdApPxYk5ZKWnV9lChoBmgJaA9DCNf6IqFt4XBAlIaUUpRoFUu4aBZHQKT8V/9YOlR1fZQoaAZoCWgPQwh1WOGWT/RxQJSGlFKUaBVLuWgWR0Ck/GwDNhVmdX2UKGgGaAloD0MI+64I/ne7cUCUhpRSlGgVS+VoFkdApPx30dzXBnV9lChoBmgJaA9DCNaryOjAVnFAlIaUUpRoFUvOaBZHQKT80e/5+H91fZQoaAZoCWgPQwj4UnjQLBhwQJSGlFKUaBVL1mgWR0Ck/NvcrRShdX2UKGgGaAloD0MIt3wkJb2kb0CUhpRSlGgVS81oFkdApPzsMd92HXV9lChoBmgJaA9DCBb7y+5Jgm9AlIaUUpRoFUvTaBZHQKT9BtZV4ot1fZQoaAZoCWgPQwjCwd7EUKJxQJSGlFKUaBVLu2gWR0Ck/RuMVDa5dX2UKGgGaAloD0MIwCK/fkhZckCUhpRSlGgVS8loFkdApP0tkUbkwXV9lChoBmgJaA9DCLx1/u2yG3FAlIaUUpRoFUvZaBZHQKT9h/ustCl1fZQoaAZoCWgPQwjM1CR4w35wQJSGlFKUaBVLxWgWR0Ck/a/wy6+WdX2UKGgGaAloD0MI5sqg2mCicECUhpRSlGgVS99oFkdApP28YZVGTnV9lChoBmgJaA9DCJnxttJrxG9AlIaUUpRoFUvVaBZHQKT9w//vOQh1fZQoaAZoCWgPQwgtXFZhMw1zQJSGlFKUaBVLxGgWR0Ck/f3yqdYodX2UKGgGaAloD0MIw0ZZvxlgckCUhpRSlGgVS91oFkdApP4F0DEFXHV9lChoBmgJaA9DCEonEkx123BAlIaUUpRoFUvWaBZHQKT+B3Zf2K51fZQoaAZoCWgPQwh2iH/YUgRvQJSGlFKUaBVLwmgWR0Ck/gxASnLrdX2UKGgGaAloD0MIA7LXu78+ckCUhpRSlGgVS99oFkdApP43E87p3XV9lChoBmgJaA9DCGtGBrmLWXBAlIaUUpRoFUviaBZHQKT+VcmjTKF1fZQoaAZoCWgPQwgHsTOFjudyQJSGlFKUaBVLyWgWR0Ck/oZ8a4tpdX2UKGgGaAloD0MITP+SVGYOcECUhpRSlGgVS9FoFkdApP6PCO3lS3V9lChoBmgJaA9DCMVwdQDE5XFAlIaUUpRoFUvHaBZHQKT+lRnezld1fZQoaAZoCWgPQwghkbbxpzdtQJSGlFKUaBVLv2gWR0Ck/sm3F1jidX2UKGgGaAloD0MIfjhIiDJ6cECUhpRSlGgVS9NoFkdApP7LLwF1S3V9lChoBmgJaA9DCNBgU+dRlm9AlIaUUpRoFUvTaBZHQKT+4A7xNIt1fZQoaAZoCWgPQwg+y/PgbopwQJSGlFKUaBVLymgWR0Ck/zAMlTm5dX2UKGgGaAloD0MIw9hCkMMtcUCUhpRSlGgVS7loFkdApP878HfMwHV9lChoBmgJaA9DCHB87Zmlj3FAlIaUUpRoFUvAaBZHQKT/PyzXz191ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 620,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
|
|
87 |
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
my_cool_model/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:550ff87cd8151bab41f0ce762a00420b7a61ca61475cec2fbc298f89807f690a
|
3 |
size 87929
|
my_cool_model/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10ed188a3c978777afa15e19f4c1fddbbb3f984a127d318ed8fe621fb29dbca2
|
3 |
size 43393
|
my_cool_model/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.
|
2 |
-
- Python: 3.8
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch: 1.13.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
|
2 |
+
- Python: 3.10.8
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
- Gym: 0.21.0
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 276.57247009010666, "std_reward": 20.71844016361283, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T06:24:57.271979"}
|