bert-base-multilingual-cased-VITD

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4876
  • Accuracy: 0.7338
  • F1 score: 0.7300

Training and evaluation data

banglaVITD is used for training and validation.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 score
0.9505 1.0 169 0.8351 0.6361 0.5587
0.7782 2.0 338 0.7390 0.7120 0.6829
0.5627 3.0 507 0.6598 0.7278 0.7265
0.4067 4.0 676 0.7841 0.7233 0.7239
0.2826 5.0 845 0.9663 0.7353 0.7265
0.219 6.0 1014 1.0408 0.7391 0.7294
0.1434 7.0 1183 1.2585 0.7346 0.7299
0.1018 8.0 1352 1.3435 0.7331 0.7299
0.0734 9.0 1521 1.4392 0.7346 0.7319
0.0558 10.0 1690 1.4876 0.7338 0.7300

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support