KARAKURI VL 2507
Collection
2 items
β’
Updated
[email protected]
First, install the required dependencies:
pip install transformers accelerate qwen-vl-utils[decord]==0.0.8
Then, use the following code to load the model and generate responses:
from transformers import AutoModelForImageTextToText, AutoProcessor
from qwen_vl_utils import process_vision_info
model_name = "karakuri-ai/karakuri-vl-32b-instruct-2507"
model = AutoModelForImageTextToText.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_name)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
This work was supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO) through the Generative AI Accelerator Challenge (GENIAC).
@misc{karakuri_vl_32b_instruct_2507,
author = { {KARAKURI} {Inc.} },
title = { {KARAKURI} {VL} 32{B} {Instruct} 2507 },
year = { 2025 },
url = { https://huggingface.co/karakuri-ai/karakuri-vl-32b-instruct-2507 },
publisher = { {Hugging Face} },
journal = { {Hugging Face} repository }
}
Base model
Qwen/Qwen2.5-VL-32B-Instruct