File size: 2,067 Bytes
8d581e2 120173b 8d581e2 47e6d99 8d581e2 47e6d99 8d581e2 47e6d99 8d581e2 47e6d99 8d581e2 120173b 8d581e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: convnext-tiny-224-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-224-finetuned
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9672
- Accuracy: 0.6208
- Precision: 0.5826
- Recall: 0.6208
- F1: 0.5945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.0428 | 0.9846 | 32 | 1.0478 | 0.6015 | 0.5745 | 0.6015 | 0.5679 |
| 0.9978 | 2.0 | 65 | 1.0032 | 0.6054 | 0.5653 | 0.6054 | 0.5762 |
| 0.9449 | 2.9846 | 97 | 0.9914 | 0.6035 | 0.5685 | 0.6035 | 0.5763 |
| 0.9432 | 4.0 | 130 | 0.9739 | 0.6141 | 0.5748 | 0.6141 | 0.5875 |
| 0.9196 | 4.9231 | 160 | 0.9672 | 0.6208 | 0.5826 | 0.6208 | 0.5945 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|