File size: 2,533 Bytes
8d581e2 120173b 8d581e2 47e6d99 8d581e2 c61c4b6 8d581e2 c61c4b6 8d581e2 47e6d99 c61c4b6 8d581e2 120173b 8d581e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: convnext-tiny-224-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-224-finetuned
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9272
- Accuracy: 0.6275
- Precision: 0.6426
- Recall: 0.6275
- F1: 0.6068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.281 | 0.9846 | 32 | 1.2165 | 0.5428 | 0.5230 | 0.5428 | 0.4989 |
| 1.0964 | 2.0 | 65 | 1.0549 | 0.5823 | 0.5459 | 0.5823 | 0.5427 |
| 0.9929 | 2.9846 | 97 | 0.9905 | 0.6169 | 0.5755 | 0.6169 | 0.5848 |
| 0.9804 | 4.0 | 130 | 0.9691 | 0.6131 | 0.5734 | 0.6131 | 0.5867 |
| 0.9389 | 4.9846 | 162 | 0.9539 | 0.6246 | 0.5874 | 0.6246 | 0.6007 |
| 0.9078 | 6.0 | 195 | 0.9536 | 0.6189 | 0.5910 | 0.6189 | 0.5973 |
| 0.8741 | 6.9846 | 227 | 0.9333 | 0.6333 | 0.5947 | 0.6333 | 0.6098 |
| 0.8523 | 8.0 | 260 | 0.9322 | 0.6323 | 0.5952 | 0.6323 | 0.6122 |
| 0.8222 | 8.9846 | 292 | 0.9354 | 0.6198 | 0.6361 | 0.6198 | 0.5992 |
| 0.7975 | 9.8462 | 320 | 0.9272 | 0.6275 | 0.6426 | 0.6275 | 0.6068 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|