karim155's picture
Model save
44a4659 verified
|
raw
history blame
4.4 kB
metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: convnext-tiny-224-finetuned
    results: []

convnext-tiny-224-finetuned

This model is a fine-tuned version of facebook/convnext-tiny-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0987
  • Logloss: 1.0987
  • Accuracy: {'accuracy': 0.5808823529411765}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Logloss Accuracy
No log 0.9412 8 1.1618 1.1618 {'accuracy': 0.5882352941176471}
0.9966 2.0 17 1.1464 1.1464 {'accuracy': 0.5845588235294118}
0.9619 2.9412 25 1.1380 1.1380 {'accuracy': 0.5772058823529411}
0.9133 4.0 34 1.1249 1.1249 {'accuracy': 0.5735294117647058}
0.8577 4.9412 42 1.1043 1.1043 {'accuracy': 0.5882352941176471}
0.8092 6.0 51 1.0899 1.0899 {'accuracy': 0.5955882352941176}
0.8092 6.9412 59 1.0927 1.0927 {'accuracy': 0.5845588235294118}
0.772 8.0 68 1.0834 1.0834 {'accuracy': 0.5845588235294118}
0.7128 8.9412 76 1.0730 1.0730 {'accuracy': 0.5845588235294118}
0.6902 10.0 85 1.0788 1.0788 {'accuracy': 0.5882352941176471}
0.645 10.9412 93 1.0649 1.0649 {'accuracy': 0.5808823529411765}
0.591 12.0 102 1.0631 1.0631 {'accuracy': 0.5845588235294118}
0.578 12.9412 110 1.0764 1.0764 {'accuracy': 0.5845588235294118}
0.578 14.0 119 1.0658 1.0658 {'accuracy': 0.5808823529411765}
0.5377 14.9412 127 1.0674 1.0674 {'accuracy': 0.5808823529411765}
0.516 16.0 136 1.0798 1.0798 {'accuracy': 0.5808823529411765}
0.4974 16.9412 144 1.0804 1.0804 {'accuracy': 0.5808823529411765}
0.4649 18.0 153 1.0818 1.0818 {'accuracy': 0.5955882352941176}
0.4422 18.9412 161 1.0742 1.0742 {'accuracy': 0.5808823529411765}
0.4222 20.0 170 1.0862 1.0862 {'accuracy': 0.5735294117647058}
0.4222 20.9412 178 1.0935 1.0935 {'accuracy': 0.5772058823529411}
0.4136 22.0 187 1.0907 1.0907 {'accuracy': 0.5772058823529411}
0.4006 22.9412 195 1.0967 1.0967 {'accuracy': 0.5735294117647058}
0.4032 24.0 204 1.0931 1.0931 {'accuracy': 0.5772058823529411}
0.3805 24.9412 212 1.1000 1.1000 {'accuracy': 0.5845588235294118}
0.3654 26.0 221 1.1078 1.1078 {'accuracy': 0.5661764705882353}
0.3654 26.9412 229 1.0959 1.0959 {'accuracy': 0.5772058823529411}
0.3678 28.0 238 1.0986 1.0986 {'accuracy': 0.5808823529411765}
0.3789 28.2353 240 1.0987 1.0987 {'accuracy': 0.5808823529411765}

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1