karim155's picture
Model save
b87e961 verified
|
raw
history blame
3.44 kB
metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: convnext-tiny-224-finetuned
    results: []

convnext-tiny-224-finetuned

This model is a fine-tuned version of facebook/convnext-tiny-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1657
  • Logloss: 1.1657
  • Accuracy: {'accuracy': 0.5808823529411765}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Logloss Accuracy
No log 0.9412 8 1.6072 1.6072 {'accuracy': 0.18382352941176472}
1.6101 2.0 17 1.5668 1.5668 {'accuracy': 0.31985294117647056}
1.5645 2.9412 25 1.5246 1.5246 {'accuracy': 0.33455882352941174}
1.4902 4.0 34 1.4774 1.4774 {'accuracy': 0.4007352941176471}
1.4243 4.9412 42 1.4283 1.4283 {'accuracy': 0.44485294117647056}
1.3502 6.0 51 1.3747 1.3747 {'accuracy': 0.48161764705882354}
1.3502 6.9412 59 1.3332 1.3332 {'accuracy': 0.48161764705882354}
1.2906 8.0 68 1.2978 1.2978 {'accuracy': 0.5036764705882353}
1.2371 8.9412 76 1.2702 1.2702 {'accuracy': 0.5147058823529411}
1.1856 10.0 85 1.2434 1.2434 {'accuracy': 0.5404411764705882}
1.1506 10.9412 93 1.2300 1.2300 {'accuracy': 0.5477941176470589}
1.0987 12.0 102 1.2088 1.2088 {'accuracy': 0.5588235294117647}
1.0758 12.9412 110 1.1949 1.1949 {'accuracy': 0.5514705882352942}
1.0758 14.0 119 1.1896 1.1896 {'accuracy': 0.5588235294117647}
1.0483 14.9412 127 1.1773 1.1773 {'accuracy': 0.5698529411764706}
1.0346 16.0 136 1.1719 1.1719 {'accuracy': 0.5735294117647058}
1.0215 16.9412 144 1.1702 1.1702 {'accuracy': 0.5698529411764706}
1.0177 18.0 153 1.1666 1.1666 {'accuracy': 0.5772058823529411}
0.9956 18.8235 160 1.1657 1.1657 {'accuracy': 0.5808823529411765}

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1