File size: 4,758 Bytes
b106ddc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# BERTopic_Economic
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("karinegabsschon/BERTopic_Economic")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 37
* Number of training documents: 1290
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | electric - car - cars - vehicles - new | 10 | -1_electric_car_cars_vehicles |
| 0 | byd - chinese - china - market - electric | 249 | 0_byd_chinese_china_market |
| 1 | tesla - sales - musk - year - europe | 131 | 1_tesla_sales_musk_year |
| 2 | new - used - year - car - month | 86 | 2_new_used_year_car |
| 3 | rivian - motley - motley fool - fool - stocks | 55 | 3_rivian_motley_motley fool_fool |
| 4 | charging - charging points - points - stations - charging stations | 52 | 4_charging_charging points_points_stations |
| 5 | tesla - musk - trump - elon - elon musk | 45 | 5_tesla_musk_trump_elon |
| 6 | spain - electric - moves - ebro - plan | 38 | 6_spain_electric_moves_ebro |
| 7 | charging - czech - ev charging - slovakia - czech republic | 37 | 7_charging_czech_ev charging_slovakia |
| 8 | units - ukraine - used - region - vehicles | 33 | 8_units_ukraine_used_region |
| 9 | tesla - musk - gerber - tsla - elon | 33 | 9_tesla_musk_gerber_tsla |
| 10 | hyundai - billion - honda - plant - nissan | 32 | 10_hyundai_billion_honda_plant |
| 11 | tax - car - pay - car tax - drivers | 31 | 11_tax_car_pay_car tax |
| 12 | percent - cars - previous year - registrations - previous | 30 | 12_percent_cars_previous year_registrations |
| 13 | million - iea - sales - global - electric | 29 | 13_million_iea_sales_global |
| 14 | cars - tax - purchase - federal - government | 29 | 14_cars_tax_purchase_federal |
| 15 | xiaomi - nio - li - chinese - yu7 | 28 | 15_xiaomi_nio_li_chinese |
| 16 | quarter - tesla - sales - electric vehicle - gm | 26 | 16_quarter_tesla_sales_electric vehicle |
| 17 | volvo - audi - jobs - cent - company | 23 | 17_volvo_audi_jobs_cent |
| 18 | public - charging - uk - charge - ev | 23 | 18_public_charging_uk_charge |
| 19 | discounts - combustion - dudenhöffer - cars - prices | 23 | 19_discounts_combustion_dudenhöffer_cars |
| 20 | euros - electric - french - aid - energy | 22 | 20_euros_electric_french_aid |
| 21 | china - shanghai - chinese - market - car | 22 | 21_china_shanghai_chinese_market |
| 22 | id - vw - every1 - id every1 - 000 euros | 19 | 22_id_vw_every1_id every1 |
| 23 | ferrari - stellantis - italy - elkann - october | 17 | 23_ferrari_stellantis_italy_elkann |
| 24 | foxconn - mitsubishi - japanese - nissan - mitsubishi motors | 17 | 24_foxconn_mitsubishi_japanese_nissan |
| 25 | belarus - charging - stations - electric - electric charging | 16 | 25_belarus_charging_stations_electric |
| 26 | volkswagen - europe - vw - group - percent | 16 | 26_volkswagen_europe_vw_group |
| 27 | german - vw - market - group - percent | 15 | 27_german_vw_market_group |
| 28 | used - used car - cars - percent - autoscout24 | 15 | 28_used_used car_cars_percent |
| 29 | vinfast - vf - vietnamese - vinfast auto - quarter | 14 | 29_vinfast_vf_vietnamese_vinfast auto |
| 30 | drivers - home - ev - petrol - charging | 13 | 30_drivers_home_ev_petrol |
| 31 | uk - car - government - mandate - evs | 13 | 31_uk_car_government_mandate |
| 32 | pod - pod point - point - edf - charging | 13 | 32_pod_pod point_point_edf |
| 33 | india - tata - ev - tata motors - plans | 12 | 33_india_tata_ev_tata motors |
| 34 | russia - electric - sales - passenger - voyah | 12 | 34_russia_electric_sales_passenger |
| 35 | analysts - gm - energy - general motors - general | 11 | 35_analysts_gm_energy_general motors |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: True
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 2.0.2
* HDBSCAN: 0.8.40
* UMAP: 0.5.8
* Pandas: 2.2.2
* Scikit-Learn: 1.6.1
* Sentence-transformers: 4.1.0
* Transformers: 4.53.0
* Numba: 0.60.0
* Plotly: 5.24.1
* Python: 3.11.13
|