DiffusionPretrained / README.md
karthik-2905's picture
Rename readme.md to README.md
42c78f7 verified
# CIFAR-10 Diffusion Model
A lightweight diffusion model trained from scratch on the CIFAR-10 dataset in just 14.5 minutes using PyTorch.
## Model Description
This is a **SimpleUNet-based diffusion model** trained to generate 32x32 RGB images similar to the CIFAR-10 dataset. The model demonstrates the fundamentals of diffusion-based image generation with a compact architecture suitable for educational purposes and quick experimentation.
### Key Features
- πŸš€ **Fast Training**: Complete training in under 15 minutes on RTX 3060
- πŸ’Ύ **Lightweight**: Only 16.8M parameters (~64MB model size)
- 🎯 **Educational**: Clean, well-documented code for learning diffusion models
- ⚑ **Efficient Inference**: Generate images in seconds on consumer GPUs
## Model Details
| Attribute | Value |
|-----------|-------|
| **Architecture** | SimpleUNet with ResNet blocks + Attention |
| **Parameters** | 16,808,835 |
| **Dataset** | CIFAR-10 (50,000 training images) |
| **Image Size** | 32Γ—32 RGB |
| **Training Steps** | 7,820 (20 epochs Γ— 391 batches) |
| **Training Time** | 14.54 minutes |
| **Hardware** | NVIDIA RTX 3060 (0.43GB VRAM used) |
| **Framework** | PyTorch 2.0+ |
## Quick Start
### Installation
```bash
pip install torch torchvision matplotlib tqdm pillow numpy
```
### Basic Usage
```python
import torch
import matplotlib.pyplot as plt
# Load model
checkpoint = torch.load('complete_diffusion_model.pth')
model = SimpleUNet(**checkpoint['model_config'])
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Initialize scheduler
scheduler = DDPMScheduler(**checkpoint['diffusion_config'])
# Generate images
@torch.no_grad()
def generate_images(model, scheduler, num_images=4):
device = next(model.parameters()).device
images = torch.randn(num_images, 3, 32, 32).to(device)
for t in range(999, -1, -20): # 50 denoising steps
timestep = torch.full((num_images,), t, device=device)
noise_pred = model(images, timestep)
# Simplified DDPM step
alpha_t = scheduler.alpha_cumprod[t]
alpha_prev = scheduler.alpha_cumprod[t-20] if t >= 20 else 1.0
pred_x0 = (images - torch.sqrt(1-alpha_t) * noise_pred) / torch.sqrt(alpha_t)
images = torch.sqrt(alpha_prev) * pred_x0 + torch.sqrt(1-alpha_prev) * noise_pred
return images
# Generate and display
generated = generate_images(model, scheduler)
```
## Training Details
- **Loss Function**: MSE between predicted and actual noise
- **Optimizer**: AdamW (lr=1e-4, weight_decay=1e-6)
- **Scheduler**: CosineAnnealingLR
- **Batch Size**: 128
- **Final Loss**: 0.0363 (73% reduction from initial)
- **Diffusion Steps**: 1000 (linear beta schedule)
## Performance
### Training Loss Curve
The model shows excellent convergence:
- **Epoch 1**: 0.1349 β†’ **Epoch 20**: 0.0363
- **Best Loss**: 0.0358 (Epoch 19)
- **Stable convergence** without overfitting
### Generation Quality
- βœ… Captures CIFAR-10 color distributions
- βœ… Generates diverse, non-repetitive outputs
- ⚠️ Abstract patterns (needs longer training for object recognition)
- 🎯 Suitable for color/texture generation tasks
## Files in this Repository
| File | Description | Size |
|------|-------------|------|
| `complete_diffusion_model.pth` | Full model with config and weights | ~64MB |
| `diffusion_model_final.pth` | Training checkpoint (epoch 20) | ~64MB |
| `model_info.json` | Training metadata and hyperparameters | <1KB |
| `inference_example.py` | Complete inference script with model classes | ~5KB |
## Model Architecture
```
SimpleUNet(
time_embedding: TimeEmbedding(128)
encoder: 3 ResNet blocks with downsampling
middle: ResNet + Self-Attention + ResNet
decoder: 3 ResNet blocks with upsampling
output: GroupNorm β†’ SiLU β†’ Conv2d
)
```
## Use Cases
- πŸŽ“ **Educational**: Learn diffusion model fundamentals
- πŸ”¬ **Research**: Baseline for diffusion experiments
- 🎨 **Art**: Generate abstract textures and patterns
- ⚑ **Prototyping**: Quick diffusion model testing
## Limitations & Improvements
### Current Limitations
- Generates abstract patterns rather than recognizable objects
- Trained on small 32Γ—32 resolution
- Limited to 20 training epochs
### Suggested Improvements
1. **Extended Training**: 50-100 epochs for better object generation
2. **Larger Architecture**: Increase model capacity
3. **Advanced Sampling**: Implement DDIM or DPM-Solver++
4. **Higher Resolution**: Train on 64Γ—64 or 128Γ—128 images
5. **Better Datasets**: Use CelebA-HQ or custom datasets
## Citation
```bibtex
@misc{cifar10-diffusion-2025,
title={CIFAR-10 Diffusion Model: Fast Training Implementation},
author={Karthik},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/karthik-2905/DiffusionPretrained}}
}
```
## License
MIT License - Free for research and commercial use.
---
**πŸš€ Want to train your own?** Check out the [full implementation](https://github.com/GruheshKurra/DiffusionModelPretrained) with Jupyter notebooks and step-by-step training code!
**πŸ“Š Training Stats**: 16.8M params β€’ 14.5min training β€’ RTX 3060 β€’ PyTorch 2.0