|
---
|
|
model-name: LlamaFineTuned
|
|
model-type: Causal Language Model
|
|
license: apache-2.0
|
|
tags:
|
|
- text-generation
|
|
- conversational-ai
|
|
- llama
|
|
- fine-tuned
|
|
|
|
---
|
|
|
|
# LlamaFineTuned
|
|
|
|
This model is a fine-tuned version of Meta's Llama model, designed for conversational AI and text generation tasks. It has been fine-tuned on a specific dataset to improve its performance on a particular set of tasks.
|
|
|
|
## Model Details
|
|
|
|
- **Model Name:** LlamaFineTuned
|
|
- **Base Model:** Meta Llama
|
|
- **Model Type:** Causal Language Model
|
|
- **License:** Apache 2.0
|
|
- **Training Data:** [Specify the dataset used for fine-tuning]
|
|
- **Intended Use:** Conversational AI, text generation
|
|
- **Limitations:** [Specify any limitations of the model]
|
|
|
|
## How to Use
|
|
|
|
You can use this model with the Hugging Face Transformers library:
|
|
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
model_name = "karthik1830/LlamaFineTuned"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
# Generate text
|
|
prompt = "Hello, how are you?"
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
|
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
print(generated_text) |