kavyamanohar/whisper-supreme-court-asr

This model is a fine-tuned version of openai/whisper-small on the Supreme Court Hearing Corpus - Subset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8703
  • Wer: 69.8671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8763 5.5714 100 1.8904 162.7770
0.7801 11.1143 200 1.5403 55.0222
0.0716 16.6857 300 1.5505 56.7947
0.0118 22.2286 400 1.6573 56.8685
0.0076 27.8 500 1.7218 83.3087
0.0014 33.3429 600 1.7909 79.2467
0.0005 38.9143 700 1.8290 67.8730
0.0003 44.4571 800 1.8555 69.4239
0.0002 50.0 900 1.8669 69.7932
0.0002 55.5714 1000 1.8703 69.8671

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
51
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for kavyamanohar/whisper-supreme-court-asr

Finetuned
(2299)
this model

Dataset used to train kavyamanohar/whisper-supreme-court-asr

Evaluation results