See axolotl config
axolotl version: 0.8.0.dev0
# 学習のベースモデルに関する設定
base_model: google/gemma-2-2b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# 学習後のモデルのHFへのアップロードに関する設定
hub_model_id: kazuyamaa/code-trans-gemma-2-2b-sft-lora
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true
# Liger Kernelの設定(学習の軽量・高速化)
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
# 量子化に関する設定
load_in_8bit: false
load_in_4bit: false
# SFTに利用するchat templateの設定
chat_template: gemma
# 学習データセットの前処理に関する設定
datasets:
- path: kazuyamaa/multi-language-messages-01
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kazuyamaa/code-translate-google_messages
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kazuyamaa/code_x_glue_cc_code_refinement_messages
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kazuyamaa/CodeTranslatorLLM-Code-Translation_messages
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kazuyamaa/CodeTranslatorLLM-Code-Translation_messages
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kazuyamaa/CodeLlama-34b-Instruct-hf-synthetic-datasets
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
# データセット、モデルの出力先に関する設定
shuffle_merged_datasets: true
dataset_prepared_path: /workspace/data/sft-data
output_dir: /workspace/data/models/code-trans-gemma-2-2b-sft-ver01
# valid datasetのサイズ
val_set_size: 0.05
# LoRAに関する設定(フルファインチューニングしたい場合は全て空欄にする)
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
# wandbに関する設定
wandb_project: axolotl
wandb_entity: kazukitakayamas051-securities-companies
wandb_watch:
wandb_name: sft-lora-2
wandb_log_model:
# 学習に関する様々な設定
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 3e-4
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_strategy: steps
save_steps: 50
save_total_limit: 2
warmup_steps: 10
eval_steps: 50
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
code-trans-gemma-2-2b-sft-lora
This model is a fine-tuned version of google/gemma-2-2b on the kazuyamaa/multi-language-messages-01, the kazuyamaa/code-translate-google_messages, the kazuyamaa/code_x_glue_cc_code_refinement_messages, the kazuyamaa/CodeTranslatorLLM-Code-Translation_messages, the kazuyamaa/CodeTranslatorLLM-Code-Translation_messages and the kazuyamaa/CodeLlama-34b-Instruct-hf-synthetic-datasets datasets. It achieves the following results on the evaluation set:
- Loss: 0.1038
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- total_eval_batch_size: 2
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6358 | 0.0019 | 1 | 0.6480 |
0.7695 | 0.0936 | 50 | 0.6026 |
0.5641 | 0.1871 | 100 | 0.4303 |
0.3587 | 0.2807 | 150 | 0.3163 |
0.2699 | 0.3742 | 200 | 0.2515 |
0.3096 | 0.4678 | 250 | 0.2050 |
0.1531 | 0.5613 | 300 | 0.1695 |
0.1314 | 0.6549 | 350 | 0.1437 |
0.1047 | 0.7485 | 400 | 0.1267 |
0.0923 | 0.8420 | 450 | 0.1139 |
0.0743 | 0.9356 | 500 | 0.1038 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support