|
--- |
|
license: apache-2.0 |
|
tags: |
|
- tabular-regression |
|
- finance |
|
- settlement-fails |
|
--- |
|
|
|
# Fails-Forecasting v1 (XGBoost + LightGBM) |
|
|
|
Predicts next-day settlement-fail notional for US Treasuries & corporates. |
|
|
|
| metric | value | |
|
|--------|-------| |
|
| MAE | **4.2 bn** | |
|
| RMSE | 5.8 bn | |
|
|
|
## Files |
|
* `xgb_next_day_fails_model.joblib` – point prediction |
|
* `lgb_quantile90_next_day_fails.joblib` – 90-percentile upper-bound |
|
|
|
|
|
<img src="streaming forecaster.PNG" alt="Streaming Fail-Forecaster: training & inference flow" width="80%"> |
|
|
|
Trained on FINRA FTD + TRACE (2009-2025). |
|
|
|
**Usage** |
|
|
|
```python |
|
import joblib, lightgbm as lgb, pandas as pd |
|
xgb = joblib.load("xgb_next_day_fails_model.joblib") |
|
lgbm = lgb.Booster(model_file="lgb_quantile90_next_day_fails.txt") |
|
|
|
y_hat = xgb.predict(X_new) |
|
y_q90 = lgbm.predict(X_new) |
|
alert = y_hat > y_q90 |
|
``` |
|
|
|
## Citation |
|
|
|
> Musodza, K. (2025). Bond Settlement Automated Exception Handling and Reconciliation. Zenodo. https://doi.org/10.5281/zenodo.16828730 |
|
> |
|
> ➡️ Technical white-paper & notebooks: https://github.com/Coreledger-tech/Exception-handling-reconciliation.git |
|
|