SentenceTransformer based on kiarashmo/chembberta-77m-mlm-safetensors
This is a sentence-transformers model finetuned from kiarashmo/chembberta-77m-mlm-safetensors. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: kiarashmo/chembberta-77m-mlm-safetensors
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1',
'COC(=O)NC(C(=O)NC(Cc1ccccc1)C(O)CN(Cc1ccc(-c2ccccn2)cc1)NC(=O)C(NC(=O)OC)C(C)(C)C)C(C)(C)C',
'COc1ccc(C(=O)CC(=O)c2ccc(C(C)(C)C)cc2)cc1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.8293, -0.3326],
# [ 0.8293, 1.0000, -0.0993],
# [-0.3326, -0.0993, 1.0000]])
Evaluation
Metrics
Binary Classification
- Dataset:
val-sim
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.671 |
cosine_accuracy_threshold | 0.863 |
cosine_f1 | 0.7043 |
cosine_f1_threshold | -0.3092 |
cosine_precision | 0.5764 |
cosine_recall | 0.9052 |
cosine_ap | 0.7371 |
cosine_mcc | 0.2469 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,184 training samples
- Columns:
text
andlabel
- Approximate statistics based on the first 1000 samples:
text label type string int details - min: 3 tokens
- mean: 43.69 tokens
- max: 221 tokens
- 0: ~92.10%
- 1: ~7.90%
- Samples:
text label CC(C)CC(NC(=O)CNC(=O)c1cc(Cl)ccc1Cl)B(O)O
1
O=C(NCC(O)CO)c1c(I)c(C(=O)NCC(O)CO)c(I)c(N(CCO)C(=O)CO)c1I
0
Clc1cc(Cl)c(OCC#CI)cc1Cl
0
- Loss:
BatchAllTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 282 evaluation samples
- Columns:
text
andlabel
- Approximate statistics based on the first 282 samples:
text label type string int details - min: 18 tokens
- mean: 65.88 tokens
- max: 244 tokens
- 0: ~50.00%
- 1: ~50.00%
- Samples:
text label CC(C)CNCc1ccc(-c2ccccc2S(=O)(=O)N2CCCC2)cc1
1
CC(C)Cn1cnc2c(N)nc3ccccc3c21
0
CC(C)CN(CC(O)C(Cc1ccccc1)NC(=O)OC1COC2OCCC12)S(=O)(=O)c1ccc(N)cc1
0
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 100warmup_steps
: 100load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 100log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | val-sim_cosine_ap |
---|---|---|---|---|
7.2464 | 500 | 4.0383 | 5.2239 | 0.6972 |
14.4928 | 1000 | 3.5414 | 5.6988 | 0.6918 |
21.7391 | 1500 | 3.2672 | 5.3616 | 0.7147 |
28.9855 | 2000 | 2.885 | 5.7296 | 0.7240 |
36.2319 | 2500 | 2.7761 | 5.5717 | 0.7399 |
43.4783 | 3000 | 2.6489 | 5.8045 | 0.7371 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.23
- Sentence Transformers: 5.0.0
- Transformers: 4.53.3
- PyTorch: 2.5.0+cu118
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1
Model tree for kiarashmo/chembberta-77m-sBERT-finetuned-on-clintox-with-sBERTBatchAllTripletLoss
Base model
kiarashmo/chembberta-77m-mlm-safetensorsEvaluation results
- Cosine Accuracy on val simself-reported0.671
- Cosine Accuracy Threshold on val simself-reported0.863
- Cosine F1 on val simself-reported0.704
- Cosine F1 Threshold on val simself-reported-0.309
- Cosine Precision on val simself-reported0.576
- Cosine Recall on val simself-reported0.905
- Cosine Ap on val simself-reported0.737
- Cosine Mcc on val simself-reported0.247