YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
language: vi
license: apache-2.0
tags:
- vietnamese
- poem-analysis
- phobert
- sequence-classification
datasets:
- kienhoang123/Vietnamese_Poem_Analysis_VN
---
# PhoBERT Model for Vietnamese Poem Analysis
This model was fine-tuned on kienhoang123/Vietnamese_Poem_Analysis_VN to analyze Vietnamese poetry using a sequence classification approach.
## Model Details
- **Base Model**: vinai/phobert-base
- **Training Data**: Vietnamese poem analysis dataset
- **Tasks**: Predict presence of emotion, metaphor, setting, motion, and prompt in Vietnamese poems
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("kienhoang123/PhoBERT_Poem_Analysis_Seq2Seq")
model = AutoModelForSequenceClassification.from_pretrained("kienhoang123/PhoBERT_Poem_Analysis_Seq2Seq")
# Prepare your input
poem = "Your Vietnamese poem here"
inputs = tokenizer(poem, return_tensors="pt", padding=True, truncation=True, max_length=256)
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.sigmoid(logits) > 0.5 # Convert to binary predictions
# Interpret results
fields = ["emotion", "metaphor", "setting", "motion", "prompt"]
for i, field in enumerate(fields):
present = "present" if predictions[0][i].item() else "absent"
print(f"{field}: {present}")
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support