kinedx's picture
Upload folder using huggingface_hub
e4ea4d9 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10501
  - loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
  - source_sentence: 일정이  많은 날은 오늘입니까 내일입니까?
    sentences:
      - 내일 일곱시에 맞춰둔 알람 벨소리가 뭐야?
      - 슬플  참지 말고 빗속을 달려보도록.
      - 티비 켤때 음성명령은 어떻게 해?
  - source_sentence: 호스트의 초코릿 선물에 저희아기들이 행복했답니다.
    sentences:
      - 신속하고 정확한 의사소통도 장점입니다.
      - 역사에 기록된 태풍  가장  규모의 태풍은 무엇일까?
      - 그리고 일단 호스트분들이 친절했습니다.
  - source_sentence: 역시나 주방을 이용할  있다는건 정말  장점인  같아요.
    sentences:
      - 텝스 스터디 모임을 매주에  번씩 하나?
      - 저는 부엌을 사용할  있다는 것이  장점이라고 생각해요.
      - 저는  이후로는 에어비앤비안쓸라고요.
  - source_sentence: 하지만 사소하게 아쉬웠던 점은 이불이 담요에요.
    sentences:
      - 하지만 조금 아쉬운 점은 이불이 담요라는 것입니다.
      - 진정한 에어비앤비를 느낄  있었습니다.
      - 위치, 청결도, 가격, 호스트 모두 좋습니다.
  - source_sentence:  숙소에서 가장 좋았던 점은 위치였습니다.
    sentences:
      -  숙소의 가장 좋은 점은 그것의 위치였습니다.
      - 생산업체들이 생산 물량을 늘릴  있도록 원재료 추가 확보  최대한 지원하기 바랍니다.
      - 다른 리뷰들과 마찬가지로, 부엌에는 여러분이 필요한 모든 것이 있고 화장실은 깨끗해요!
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
co2_eq_emissions:
  emissions: 5.887689224694198
  energy_consumed: 0.013454438564481419
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD Ryzen 7 7800X3D 8-Core Processor
  ram_total_size: 30.908397674560547
  hours_used: 0.05
  hardware_used: 1 x NVIDIA GeForce RTX 4080
model-index:
  - name: SentenceTransformer based on klue/roberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.34770709642503844
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.35560473197486514
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.9623505245361443
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9225407729630292
            name: Spearman Cosine

SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '이 숙소에서 가장 좋았던 점은 위치였습니다.',
    '이 숙소의 가장 좋은 점은 그것의 위치였습니다.',
    '생산업체들이 생산 물량을 늘릴 수 있도록 원재료 추가 확보 등 최대한 지원하기 바랍니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.3477
spearman_cosine 0.3556

Semantic Similarity

Metric Value
pearson_cosine 0.9624
spearman_cosine 0.9225

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,501 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 20.15 tokens
    • max: 56 tokens
    • min: 6 tokens
    • mean: 19.71 tokens
    • max: 58 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    가이드북이 이메일로 오는 만큼 관리가 철저한 걸 느낄 수 있었습니다! 심지어 넷플릭스도 무료로 볼 수 있었습니다! 0.0
    숙소가 정말 깨끗하고 온수도 잘나옵니다. 집이 정말 깔끔하고 온수도 잘 나옵니다. 0.8400000000000001
    완전 1분 거리에 시부야에서 정말 맛있는 맛집이 많습니다. 시부야에는 1분 거리에 맛있는 음식점이 너무 많아요. 0.74
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_cosine
-1 -1 - 0.3556
0.7610 500 0.0282 -
1.0 657 - 0.9132
1.5221 1000 0.0079 0.9169
2.0 1314 - 0.9194
2.2831 1500 0.005 -
3.0 1971 - 0.9212
3.0441 2000 0.0034 0.9215
3.8052 2500 0.0026 -
4.0 2628 - 0.9225

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.013 kWh
  • Carbon Emitted: 0.006 kg of CO2
  • Hours Used: 0.05 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 4080
  • CPU Model: AMD Ryzen 7 7800X3D 8-Core Processor
  • RAM Size: 30.91 GB

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}