metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
- source_sentence: 일정이 더 많은 날은 오늘입니까 내일입니까?
sentences:
- 내일 일곱시에 맞춰둔 알람 벨소리가 뭐야?
- 슬플 때 참지 말고 빗속을 달려보도록.
- 티비 켤때 음성명령은 어떻게 해?
- source_sentence: 호스트의 초코릿 선물에 저희아기들이 행복했답니다.
sentences:
- 신속하고 정확한 의사소통도 장점입니다.
- 역사에 기록된 태풍 중 가장 큰 규모의 태풍은 무엇일까?
- 그리고 일단 호스트분들이 친절했습니다.
- source_sentence: 역시나 주방을 이용할 수 있다는건 정말 큰 장점인 것 같아요.
sentences:
- 텝스 스터디 모임을 매주에 몇 번씩 하나?
- 저는 부엌을 사용할 수 있다는 것이 큰 장점이라고 생각해요.
- 저는 이 이후로는 에어비앤비안쓸라고요.
- source_sentence: 하지만 사소하게 아쉬웠던 점은 이불이 담요에요.
sentences:
- 하지만 조금 아쉬운 점은 이불이 담요라는 것입니다.
- 진정한 에어비앤비를 느낄 수 있었습니다.
- 위치, 청결도, 가격, 호스트 모두 좋습니다.
- source_sentence: 이 숙소에서 가장 좋았던 점은 위치였습니다.
sentences:
- 이 숙소의 가장 좋은 점은 그것의 위치였습니다.
- 생산업체들이 생산 물량을 늘릴 수 있도록 원재료 추가 확보 등 최대한 지원하기 바랍니다.
- 다른 리뷰들과 마찬가지로, 부엌에는 여러분이 필요한 모든 것이 있고 화장실은 깨끗해요!
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
co2_eq_emissions:
emissions: 5.887689224694198
energy_consumed: 0.013454438564481419
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: AMD Ryzen 7 7800X3D 8-Core Processor
ram_total_size: 30.908397674560547
hours_used: 0.05
hardware_used: 1 x NVIDIA GeForce RTX 4080
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.34770709642503844
name: Pearson Cosine
- type: spearman_cosine
value: 0.35560473197486514
name: Spearman Cosine
- type: pearson_cosine
value: 0.9623505245361443
name: Pearson Cosine
- type: spearman_cosine
value: 0.9225407729630292
name: Spearman Cosine
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'이 숙소에서 가장 좋았던 점은 위치였습니다.',
'이 숙소의 가장 좋은 점은 그것의 위치였습니다.',
'생산업체들이 생산 물량을 늘릴 수 있도록 원재료 추가 확보 등 최대한 지원하기 바랍니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3477 |
spearman_cosine | 0.3556 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9624 |
spearman_cosine | 0.9225 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 20.15 tokens
- max: 56 tokens
- min: 6 tokens
- mean: 19.71 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 가이드북이 이메일로 오는 만큼 관리가 철저한 걸 느낄 수 있었습니다!
심지어 넷플릭스도 무료로 볼 수 있었습니다!
0.0
숙소가 정말 깨끗하고 온수도 잘나옵니다.
집이 정말 깔끔하고 온수도 잘 나옵니다.
0.8400000000000001
완전 1분 거리에 시부야에서 정말 맛있는 맛집이 많습니다.
시부야에는 1분 거리에 맛있는 음식점이 너무 많아요.
0.74
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
-1 | -1 | - | 0.3556 |
0.7610 | 500 | 0.0282 | - |
1.0 | 657 | - | 0.9132 |
1.5221 | 1000 | 0.0079 | 0.9169 |
2.0 | 1314 | - | 0.9194 |
2.2831 | 1500 | 0.005 | - |
3.0 | 1971 | - | 0.9212 |
3.0441 | 2000 | 0.0034 | 0.9215 |
3.8052 | 2500 | 0.0026 | - |
4.0 | 2628 | - | 0.9225 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.013 kWh
- Carbon Emitted: 0.006 kg of CO2
- Hours Used: 0.05 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 4080
- CPU Model: AMD Ryzen 7 7800X3D 8-Core Processor
- RAM Size: 30.91 GB
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}