whisper-large-v3-urdu-ct2

CTranslate2-int8 conversion of kingabzpro/whisper-large-v3-turbo-urdu for fast CPU inference.


Installation

pip install faster-whisper ctranslate2
  • faster-whisper provides a simple Python API on top of CTranslate2.
  • ctranslate2 is the optimized inference backend.

Download

from faster_whisper import WhisperModel
model = WhisperModel("kingabzpro/whisper-large-v3-urdu-ct2", device="cpu", compute_type="int8")

Usage

from faster_whisper import WhisperModel

# Load the int8-quantized CTranslate2 model
model = WhisperModel(
    "kingabzpro/whisper-large-v3-urdu-ct2",
    device="cpu",         # run on CPU
    compute_type="int8"   # int8 quantization
)

# Transcribe a WAV, MP3 or NumPy array
segments, info = model.transcribe(
    "path/to/audio.wav",
    beam_size=5,          # ↔ speed vs. accuracy
    vad_filter=True       # skip silence for extra speed
)

# Join segments into a single string
text = " ".join(segment.text for segment in segments)
print(text)

Performance

  • 5×–10× faster than the default PyTorch pipeline on a modern CPU
  • Int8 weights reduce memory footprint by ~4×

Troubleshooting

  • “ModuleNotFoundError” → check that faster-whisper and ctranslate2 are installed
  • Noise or dropouts → try lowering beam_size or disabling vad_filter
  • Out-of-memory → ensure no other heavy processes are running, or switch to float16 quantization
Downloads last month
43
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for kingabzpro/whisper-large-v3-urdu-ct2

Finetuned
(303)
this model

Dataset used to train kingabzpro/whisper-large-v3-urdu-ct2

Space using kingabzpro/whisper-large-v3-urdu-ct2 1

Collection including kingabzpro/whisper-large-v3-urdu-ct2