|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-large-v3 |
|
tags: |
|
- automatic-speech-recognition |
|
- whisper |
|
- urdu |
|
- mozilla-foundation/common_voice_17_0 |
|
- hf-asr-leaderboard |
|
datasets: |
|
- mozilla-foundation/common_voice_17_0 |
|
metrics: |
|
- wer |
|
- cer |
|
- bleu |
|
- chrf |
|
model-index: |
|
- name: whisper-large-v3-urdu |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Common Voice 17.0 (Urdu) |
|
type: mozilla-foundation/common_voice_17_0 |
|
config: ur |
|
split: test |
|
args: ur |
|
metrics: |
|
- type: wer |
|
value: 26.019 |
|
name: WER |
|
- type: cer |
|
value: 9.426 |
|
name: CER |
|
- type: bleu |
|
value: 59.446 |
|
name: BLEU |
|
- type: chrf |
|
value: 82.902 |
|
name: ChrF |
|
language: |
|
- ur |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper large V3 Urdu ASR Model 🥇 |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_17_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0204 |
|
- Wer: 21.4712 |
|
- Cer: 7.1975 |
|
|
|
|
|
## Quick Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
transcriber = pipeline( |
|
"automatic-speech-recognition", |
|
model="kingabzpro/whisper-large-v3-turbo-urdu" |
|
) |
|
|
|
transcriber.model.generation_config.forced_decoder_ids = None |
|
transcriber.model.generation_config.language = "ur" |
|
|
|
transcription = transcriber("audio2.mp3") |
|
print(transcription) |
|
``` |
|
|
|
```sh |
|
{'text': 'دیکھیے پانی کب تک بہتا اور مچھلی کب تک تیرتی ہے'} |
|
``` |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:| |
|
| 0.0261 | 0.5089 | 300 | 0.0254 | 30.0224 | 10.3646 | |
|
| 0.0211 | 1.0170 | 600 | 0.0226 | 25.8588 | 8.5780 | |
|
| 0.0121 | 1.5259 | 900 | 0.0206 | 24.2158 | 7.9412 | |
|
| 0.0093 | 2.0339 | 1200 | 0.0195 | 21.3032 | 7.2018 | |
|
| 0.0043 | 2.5428 | 1500 | 0.0204 | 21.4712 | 7.1975 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.52.2 |
|
- Pytorch 2.7.1+cu126 |
|
- Datasets 3.4.1 |
|
- Tokenizers 0.21.2 |
|
|
|
--- |
|
|
|
## Evaluation |
|
|
|
Urdu ASR Evaluation on Common Voice 17.0 (Test Split). |
|
|
|
| Metric | Value | Description | |
|
|--------|----------|------------------------------------| |
|
| **WER** | 26.019% | Word Error Rate (lower is better) | |
|
| **CER** | 9.426% | Character Error Rate | |
|
| **BLEU** | 59.446% | BLEU Score (higher is better) | |
|
| **ChrF** | 82.902 | Character n-gram F-score | |
|
|
|
>👉 Review the testing script: [Testing Whisper Large V3 Urdu](https://www.kaggle.com/code/kingabzpro/testing-urdu-whisper-large-v3) |
|
|
|
|