ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4073
- Accuracy: 0.8602
- Precision: 0.8507
- Recall: 0.8716
- F1: 0.8606
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3947 | 1.0 | 714 | 0.4222 | 0.8506 | 0.8421 | 0.8679 | 0.8536 |
0.297 | 2.0 | 1428 | 0.3969 | 0.8564 | 0.8474 | 0.8668 | 0.8558 |
0.2189 | 3.0 | 2142 | 0.4073 | 0.8602 | 0.8507 | 0.8716 | 0.8606 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 2
Model tree for koreanboy/ynat-model
Base model
monologg/koelectra-base-v3-discriminator