Model Details
BertWordPieceTokenizer
- tokenizer for hindi language
Usage
from transformers import AutoTokenizer
hi_tokenizer = AutoTokenizer.from_pretrained('krinal/BertWordPieceTokenizer-hi')
hi_str = "आज का सूर्य देखो, कितना प्यारा, कितना शीतल है"
# encode text
encoded_str = hi_tokenizer.encode(hi_str)
# decode text
decoded_str = hi_tokenizer.decode(encoded_str)
Language
- hi
Training
- For training see Train BertWordPieceTokenizer
Dataset
- trained on BHAAV (hi sentiment analysis dataset)
- dataset source: Bhaav
- Hindi text corpus (20,304 sentences)
Citation
@article{kumar2019bhaav,
title={BHAAV-A Text Corpus for Emotion Analysis from Hindi Stories},
author={Kumar, Yaman and Mahata, Debanjan and Aggarwal, Sagar and Chugh, Anmol and Maheshwari, Rajat and Shah, Rajiv Ratn},
journal={arXiv preprint arXiv:1910.04073},
year={2019}
}
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.