kugler's picture
kugler/xlmr-large-AmDi-synset-classifier-marked
d28cc01 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: xlmr_synset_classifier_marked
    results: []

xlmr_synset_classifier_marked

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5065
  • Accuracy: 0.8542
  • F1: 0.8462
  • Precision: 0.8503
  • Recall: 0.8542
  • F1 Macro: 0.6998
  • Precision Macro: 0.6940
  • Recall Macro: 0.7209
  • F1 Micro: 0.8542
  • Precision Micro: 0.8542
  • Recall Micro: 0.8542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall F1 Macro Precision Macro Recall Macro F1 Micro Precision Micro Recall Micro
3.4502 0.6221 100 1.8070 0.6245 0.5355 0.5022 0.6245 0.2357 0.2456 0.2565 0.6245 0.6245 0.6245
1.1977 1.2442 200 0.7296 0.8116 0.7934 0.8034 0.8116 0.5365 0.5496 0.5643 0.8116 0.8116 0.8116
0.724 1.8663 300 0.6379 0.8282 0.8150 0.8301 0.8282 0.5981 0.5903 0.6309 0.8282 0.8282 0.8282
0.5655 2.4883 400 0.5609 0.8398 0.8267 0.8326 0.8398 0.6235 0.6094 0.6519 0.8398 0.8398 0.8398
0.5095 3.1104 500 0.5166 0.8488 0.8389 0.8470 0.8488 0.6594 0.6492 0.6862 0.8488 0.8488 0.8488
0.4206 3.7325 600 0.4964 0.8479 0.8396 0.8412 0.8479 0.6778 0.6770 0.6923 0.8479 0.8479 0.8479
0.386 4.3546 700 0.5091 0.8502 0.8418 0.8468 0.8502 0.6949 0.6930 0.7146 0.8502 0.8502 0.8502
0.3463 4.9767 800 0.5065 0.8542 0.8462 0.8503 0.8542 0.6998 0.6940 0.7209 0.8542 0.8542 0.8542

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3